Kmeans聚类算法是十分常用的聚类算法,给定聚类的数目N,Kmeans会自动在样本数据中寻找N个质心,从而将样本数据分为N个类别。下面简要介绍Kmeans聚类原理,并附上自己写的Kmeans聚类算法实现。

一、Kmeans原理

  1. 输入:一组数据data,设定需要聚类的类别数目ClusterCnt,设定迭代次数IterCnt,以及迭代截止精度eps

      输出:数据data对应的标签label,每一个数据都会对应一个label(范围0 ~ ClusterCnt-1),表示该数据属于哪一类。

  2. 首先,选取初始ClusterCnt个质心位置,选取初始质心位置很重要。一般原则是这ClusterCnt个质心在数值上相互差别越远越好(距离越大越好)。偷懒的做法就是随机选取,或者是选取前面ClusterCnt个数据作为初始质心。但是前提是初始质心数值不能存在重复或者相等的情况。

  3. 开始聚类,这是一个迭代过程。先针对每一个数据,计算其与每个质心之间的距离(差别),选取距离最小的对应的质心,将其归为一类(设置为同一个标签值),依次遍历所有数据。这样第一次迭代后,所有数据都有一个标签值。

  4. 计算新的质心。每一次迭代完成后,计算每个类别中数据中的均值,将此均值作为新的质心,进行下一轮的迭代。这样每一轮迭代后都会重新计算依次质心。直到满足5中的条件。

  5. 每次迭代后,计算每个类别中数值的方差值,然后求出所有类别方差值得均值var,将var作为一个判别准则,当本次var与上次var之间的变化小于eps时,或者迭代次数大于iterCnt时,停止迭代,聚类完成。

  6. 输出数据的标签。相同标签值得被kmeans聚为一类,这样所有数据就被聚类为设定的ClusterCnt个类别。

二、图像中的应用

  简单的将kmeans算法应用于图像中像素点的分类,每个像素点的RGB值作为输入数据,计算像素点与质心之间的距离,不断迭代,直到所有像素点都有一个标签值。根据标签图像将原图像中同一类别设定相同颜色,不同类别设定不同颜色。可用于图像分割等。

  OpenCV中也集成有Kmeans算法的API,如下图,其选取初始质心有三种flag可以设置,随机选取、某种算法选取、用户设定。具体使用方法请参考OpenCV文档。

  

三、示例

原图                                                                     kmeans聚类 (10类)

  

四、代码

  见我的码云code:https://gitee.com/rxdj/myKmeans.git

图像处理中kmeans聚类算法C++实现的更多相关文章

  1. Kmeans聚类算法原理与实现

    Kmeans聚类算法 1 Kmeans聚类算法的基本原理 K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一.K-means算法的基本思想是:以空间中k个点为中心进行聚类,对 ...

  2. 转载: scikit-learn学习之K-means聚类算法与 Mini Batch K-Means算法

    版权声明:<—— 本文为作者呕心沥血打造,若要转载,请注明出处@http://blog.csdn.net/gamer_gyt <—— 目录(?)[+] ================== ...

  3. 视觉SLAM之词袋(bag of words) 模型与K-means聚类算法浅析

    原文地址:http://www.cnblogs.com/zjiaxing/p/5548265.html 在目前实际的视觉SLAM中,闭环检测多采用DBOW2模型https://github.com/d ...

  4. 视觉SLAM之词袋(bag of words) 模型与K-means聚类算法浅析(1)

    在目前实际的视觉SLAM中,闭环检测多采用DBOW2模型https://github.com/dorian3d/DBoW2,而bag of words 又运用了数据挖掘的K-means聚类算法,笔者只 ...

  5. Hadoop平台K-Means聚类算法分布式实现+MapReduce通俗讲解

        Hadoop平台K-Means聚类算法分布式实现+MapReduce通俗讲解 在Hadoop分布式环境下实现K-Means聚类算法的伪代码如下: 输入:参数0--存储样本数据的文本文件inpu ...

  6. OpenCV图像处理中“投影技术”的使用

           本文区分"问题引出"."概念抽象"."算法实现"三个部分由表及里具体讲解OpenCV图像处理中"投影技术" ...

  7. K-Means 聚类算法

    K-Means 概念定义: K-Means 是一种基于距离的排他的聚类划分方法. 上面的 K-Means 描述中包含了几个概念: 聚类(Clustering):K-Means 是一种聚类分析(Clus ...

  8. k-means聚类算法python实现

    K-means聚类算法 算法优缺点: 优点:容易实现缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢使用数据类型:数值型数据 算法思想 k-means算法实际上就是通过计算不同样本间的距离来判断他 ...

  9. K-Means 聚类算法原理分析与代码实现

    前言 在前面的文章中,涉及到的机器学习算法均为监督学习算法. 所谓监督学习,就是有训练过程的学习.再确切点,就是有 "分类标签集" 的学习. 现在开始,将进入到非监督学习领域.从经 ...

随机推荐

  1. zeromq学习记录(三)使用ZMQ_PULL ZMQ_PUSH

    /************************************************************** 技术博客 http://www.cnblogs.com/itdef/   ...

  2. Linux学习笔记:常用软件

    Linux系统下常用软件(针对CentOS,其他系统类似) lrzsz 可用于上传和下载,安装 yum -y install lrzsz ,使用 上传 rz 下载 sz mysql 安装 yum -y ...

  3. JS基础-数组的常用方法-冒泡排序

    1.数组  1.关联数组    以数字作为元素下标的数组,就是索引数组.    以字符串作为元素下标的数组,就是关联数组.  2.js的关联数组    ex:在php中       $array=[& ...

  4. java crach 日志解析

    在java开发中,或许会出现如下错误,这种错误大多出现在开发中涉及本地代码的地方. ## A fatal error has been detected by the Java Runtime Env ...

  5. this guy gonna be a daddy

    时间真快,媳妇儿怀孕了两个月了. 2016年2月10日,在横峰血检后确定媳妇儿怀孕后,我心情激动得要飞起来一样,那时,我在心里告诉自己不是个孩子了,我自己即将成为孩子的父亲.当时只顾着自个儿激动,已经 ...

  6. R语言csv与txt文本读入区分(sep参数)

    R语言csv与txt文本读入区分 R语言用来处理数据很方便,而处理数据的第一步是把数据读入内存空间,平时最常用的文本数据储存格式有两种: 一种是CSV(逗号分隔符文本)另一种是TXT(Tab分隔符或空 ...

  7. 网页中的数据的4个处理方式:CRUD(Creat, Retrive, Update, Delete)

    网页中的数据的4个处理方式:CRUD(Creat, Retrive, Update, Delete) 2018-12-21, 后续完善

  8. Codeforces Round #553 (Div. 2) C. Problem for Nazar 数学

    题意:从奇数列 1 3 5 7 9 ....  偶数列2 4 6 8 10...分别轮流取 1 2 4 ....2^n 个数构成新数列 求新数列的区间和 (就一次询问) 思路:首先单次区间和就是一个简 ...

  9. Elastic-search在linux上的安装

    今天是我装第四次 ES ,之前装好用了一段时间,后面莫名其妙爆炸了,炸出一堆异常... 安装环境: JDK1.8   centos    ElasticSearch-6.2.4 jdk1.8以上,所以 ...

  10. NLP常用术语解析

    分词(Segment):中英文都存在分词的问题,不过相对来说,英文单词与单词之间本来就有空格进行分割,所以处理起来相对方便.但是中文书写是没有分隔符的,所以分词的问题就比较突出.分词常用的手段可以是基 ...