洛谷P3929 SAC E#1 - 一道神题 Sequence1【枚举】
题目描述
小强很喜欢数列。有一天,他心血来潮,写下了一个数列。
阿米巴也很喜欢数列。但是他只喜欢其中一种:波动数列。
一个长度为n的波动数列满足对于任何i(1 <= i < n),均有:
a[2i-1] <= a[2i] 且 a[2i] >= a[2i+1](若存在) 或者
a[2i-1] >= a[2i] 且 a[2i] <= a[2i+1](若存在)
阿米巴把他的喜好告诉了小强。小强便打算稍作修改,以让这个数列成为波动数列。他想知道,能否通过仅修改一个数(或不修改),使得原数列变成波动数列。
输入输出格式
输入格式:
输入包含多组数据。
每组数据包含两行。
第一行一个整数n表示数列的长度。
接下来一行,n个整数,表示一个数列。
输出格式:
对于每一组输入,输出一行Yes或No,含义如题目所示。
输入输出样例
5
1 2 3 2 1
5
1 2 3 4 5
Yes
No
说明
对于30%的数据,n <= 10
对于另外30%的数据,m <= 1000
对于100%的数据,n <= 10^5,m <= 10^9
其中m = max|a[i]|(数列中绝对值的最大值)
【分析】:
如果给定一个序列,可以很容易的在 O(n) 时间内判断该序 列是否为波动序列。 首先判断该序列是否为波动序列,如果是,则直接输 出”Yes“。 否则,枚举修改哪一个数。 可以发现如一个数要被修改,则将其改为 ∞ 或 −∞ 一定不 会比修改为别的数不优。 所以将其修改为 ∞ 或 −∞ 后再次判断。 总复杂度 O(n^2)。
AC: 由于波动序列本质上只有 2 种,所以对于每一种波动序列, 求出将原序列变为这种波动序列最少需要修改几次。
如果两个值的较小值不大于 1,则输出”Yes“,否则输出”No“。
问题变为求原序列变为某种波动序列需要的最小修改次数。 从前向后扫,如果遇到某个元素不满足要求,则将该元素修 改为 ∞ 和 −∞ 中满足要求的那个,并将计数器加一。
最后计数器的值就是修改需要的最小次数。 总复杂度 O(n)。
【代码】:
#include <iostream>
#include <cstring>
#include <cstdio>
#define maxn 100010 using namespace std; int a[maxn];
int n; bool judge(bool dir)// 首先判断该序列是否为波动序列,如果是,则直接输 出”Yes“。 否则,枚举修改哪一个数。
{
int cnt = ;
for (int i = ; i <= n; i++, dir = !dir)
if (a[i] != a[i-] && (a[i] > a[i-]) != dir)
if (++cnt > )
return false;//从前向后扫,如果遇到某个元素不满足要求,则将该元素修 改为 ∞ 和 −∞ 中满足要求的那个,并将计数器加一。
else
{
i++;
dir = !dir;
}
return true;
} int main()
{
while (scanf("%d", &n) >= )
{
for (int i = ; i <= n; i++)
scanf("%d", &a[i]); if (n <= )
printf("Yes\n");
else
printf(judge() || judge() ? "Yes\n" : "No\n");
}
//如果两个值的较小值不大于 1,则输出”Yes“,否则输出”No“。
return ;
}
洛谷P3929 SAC E#1 - 一道神题 Sequence1【枚举】的更多相关文章
- [洛谷P3929]SAC E#1 - 一道神题 Sequence1
题目大意:给你一串数列,问你能否改变1个数或不改,使它变成波动数列? 一个长度为n的波动数列满足对于任何i(1 <= i < n),均有: a[2i-1] <= a[2i] 且 a[ ...
- 洛谷 P3927 SAC E#1 - 一道中档题 Factorial【数论//】
题目描述 SOL君很喜欢阶乘.而SOL菌很喜欢研究进制. 这一天,SOL君跟SOL菌炫技,随口算出了n的阶乘. SOL菌表示不服,立刻就要算这个数在k进制表示下末尾0的个数. 但是SOL菌太菜了于是请 ...
- 洛谷P3928 SAC E#1 - 一道简单题 Sequence2
提交地址 题目背景 小强和阿米巴是好朋友. 题目描述 小强喜欢数列.有一天,他心血来潮,写下了三个长度均为n的数列. 阿米巴也很喜欢数列.但是他只喜欢其中一种,波动数列. 阿米巴把他的喜好告诉了小强. ...
- 洛谷-P3927 SAC E#1 - 一道中档题 Factorial
原址 题目背景 数据已修改 SOL君(炉石主播)和SOL菌(完美信息教室讲师)是好朋友. 题目描述 SOL君很喜欢阶乘.而SOL菌很喜欢研究进制. 这一天,SOL君跟SOL菌炫技,随口算出了n的阶乘. ...
- [洛谷3930]SAC E#1 - 一道大水题 Knight
Description 他们经常在一起玩一个游戏,不,不是星际争霸,是国际象棋.毒奶色觉得F91是一只鸡.他在一个n×n的棋盘上用黑色的城堡(车).骑士(马).主教(象).皇后(副).国王(帅).士兵 ...
- [洛谷P3927]SAC E#1 - 一道中档题 Factorial
题目大意:求$n!$在$k(k>1)$进制下末尾0的个数. 解题思路:一个数在十进制转k进制时,我们用短除法来做.容易发现,如果连续整除p个k,则末尾有p个0. 于是问题转化为$n!$能连续整除 ...
- SAC E#1 - 一道神题 Sequence1
题目背景 小强和阿米巴是好朋友. 题目描述 小强很喜欢数列.有一天,他心血来潮,写下了一个数列. 阿米巴也很喜欢数列.但是他只喜欢其中一种:波动数列. 一个长度为n的波动数列满足对于任何i(1 < ...
- 洛谷P3926 SAC E#1 - 一道不可做题 Jelly【模拟/细节】
P3926 SAC E#1 - 一道不可做题 Jelly [链接]:https://www.luogu.org/problem/show?pid=3926 题目背景 SOL君(炉石主播)和SOL菌(完 ...
- l洛谷 P3926 SAC E#1 - 一道不可做题 Jelly
P3926 SAC E#1 - 一道不可做题 Jelly 题目背景 SOL君(炉石主播)和SOL菌(完美信息教室讲师)是好朋友. 题目描述 SOL君很喜欢吃蒟蒻果冻.而SOL菌也很喜欢蒟蒻果冻. 有一 ...
随机推荐
- 【bzoj4129】Haruna’s Breakfast 带修改树上莫队+分块
题目描述 给出一棵树,点有点权.支持两种操作:修改一个点的点权,查询链上mex. 输入 第一行包括两个整数n,m,代表树上的结点数(标号为1~n)和操作数.第二行包括n个整数a1...an,代表每个结 ...
- mac --snip 滚动截屏
1.snip 下载配置:https://jingyan.baidu.com/article/fec4bce2458d03f2618d8b8e.html 2.mac的火狐浏览器好像不支持,必须在sofa ...
- [NOIP2017 TG D2T2]宝藏
题目大意:给定一个有重边,边有权值的无向图.从某一个点出发,求到达所有的点需要的最少费用,并且限制两点之间只有一条路径.费用的计算公式为:所有边的费用之和.而边$x->y$的费用就为:$y$到初 ...
- bzoj进度条
好久没发进度了 这个月没有上个月那么猛,肯能使因为这个月不想水题吧 No. 510 Solved Problems List Solved 368 10001001100210071008101210 ...
- 【BZOJ 4103】 [Thu Summer Camp 2015]异或运算 可持久化01Trie
我们观察数据:树套树 PASS 主席树 PASS 一层一个Trie PASS 再看,异或!我们就把目光暂时定在01Tire然后我们发现,我们可以带着一堆点在01Trie上行走,因为O(n*q* ...
- PowerMock
EasyMock 以及 Mockito 都因为可以极大地简化单元测试的书写过程而被许多人应用在自己的工作中,但是这 2 种 Mock 工具都不可以实现对静态函数.构造函数.私有函数.Final 函数以 ...
- 如何让spring源码正常的部署在idea中
我在这里把我从GitHub下载的源码成功编译之后的文件放在了我的百度网盘上大家可以直接下载,也可以按如下步骤自己编译部署到idea中, 下载的地址是:http://pan.baidu.com/s/1d ...
- matlab求最大公约数和最小公倍数
最大公约数:(函数) function n = zuidagongyueshu(a,b) if(a>b) tem = a; b = a; a = tmp; end for i=1:a c = r ...
- 小程序根据input输入,动态设置按钮的样式
[需求]实现当手机号已填写和协议已勾选时,“立即登录”按钮变亮,按钮可点击:若有一个不满足,按钮置灰,不可点击:实现获取短信验证码,倒计时提示操作:对不满足要求内容进行toast弹窗提示. <v ...
- ACdream 1113 The Arrow (概率dp求期望)
E - The Arrow Time Limit:1000MS Memory Limit:64000KB 64bit IO Format:%lld & %llu Submit ...