题目链接:

http://www.lydsy.com/JudgeOnline/problem.php?id=1010

Description

  P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过L。但他希望费用最小。

Input

第一行输入两个整数N,L.接下来N行输入Ci。

Output

输出最小费用

Sample Input

5 4
3
4
2
1
4

Sample Output

1

HINT

 
1<=N<=50000,1<=L,Ci<=10^7
 
 
 
 
 

题意概述:

  现在有N件物品,每件物品有一个长度Ci,现在要求把这些物品分组,每组必须是连续的一段,假如把第i~j件物品分成一组,那么这一组的长度x为j-i+sum{ck|i<=k<=j},同时这一组的代价为(x-L)^2,L是一个常量。现在问将这些物品分组的最小代价。1<=N<=50000,1<=L,Ci<=10^7.

分析:

  容易看出来一个dp模型。

  令f(i)表示将前i个物品分组的最小代价。

  f(i)=min{ f(j)+(i-j-1+sum[i]-sum[j]-L)^2 | 0<=j<i }

  令wi=i+sum[i],LL=L+1,去掉min,改写式子得到:

  [2*wj*LL+wj^2+f(j)]=wi*(2*wj)+f(i)-(wi-LL)^2

  如果把(2*wj,2*wj*LL+wj^2+f(j))看成点,那么现在要做的就是在一个点集中找到一个点使得f(i)-(wi-LL)^2最小。

  每次计算的直线的斜率有单调递增的趋势。因为是斜率始终大于0并且要让纵截距最小,于是我们需要维护一个下凸壳。因为斜率具有单调性,所以说每一次计算的时候都从队首取出一个元素计算,并且和队首后面的元素计算出来的答案比较。如果队首的答案更劣,那么直接出队,因为斜率具有单调性,之后一定也不会用到这个点了。每一次计算完之后插入新点,对于新点来说从队尾开始看起。如果这个点和队尾前一个点的斜率小于队尾和队尾前一个点的斜率,那么说明队尾的点被包住了,出队,最后把这个点甩进去(因为插入的点的横坐标都是单调递增的,所以说不会有一些奇奇怪怪的问题)。两个出队操作都在当前点不更加优秀或者队列中只有一个点的时候停止。

  时间复杂度O(N)。

  注意两个很sb的问题:1.初始化的时候要用0来初始化,表示这个物品和前面所有的物品分成一组;2.因为我们引用了斜率这个概念,所以在推式子的时候一定记得把式子写成斜截式!!!

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<queue>
#include<set>
#include<map>
#include<vector>
#include<cctype>
using namespace std;
const int maxn=;
typedef long long LL; int N,L,C[maxn];
LL f[maxn],sum[maxn];
struct XY{ LL x,y; }mq[maxn]; int front,rear; void data_in()
{
scanf("%d%d",&N,&L);
for(int i=;i<=N;i++) scanf("%d",&C[i]);
}
LL X(int i){ return *(i+sum[i]); }
LL Y(int i){ return *(i+sum[i])*(L+)+(i+sum[i])*(i+sum[i])+f[i]; }
double getk(const XY &a,const XY &b){ return 1.0*(a.y-b.y)/(a.x-b.x); }
void work()
{
for(int i=;i<=N;i++) sum[i]=sum[i-]+C[i];
mq[rear++]=(XY){X(),Y()};
XY p;
for(int i=;i<=N;i++){
while(rear-front>&&getk(mq[front],mq[front+])<i+sum[i]) front++;
f[i]=-(i+sum[i])*mq[front].x+mq[front].y+(i+sum[i]-L-)*(i+sum[i]-L-);
p=(XY){X(i),Y(i)};
while(rear-front>&&getk(p,mq[rear-])<getk(mq[rear-],mq[rear-])) rear--;
mq[rear++]=p;
}
cout<<f[N]<<'\n';
}
int main()
{
data_in();
work();
return ;
}

BZOJ 1010 HNOI2008 玩具装箱 斜率优化的更多相关文章

  1. BZOJ 1010 [HNOI2008]玩具装箱 (斜率优化DP)

    题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=1010 思路 [斜率优化DP] 我们知道,有些DP方程可以转化成DP[i]=f[j]+x[i ...

  2. BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9812  Solved: 3978[Submit][St ...

  3. BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP

    1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...

  4. bzoj 1010 [HNOI2008]玩具装箱toy(DP的斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7874  Solved: 3047[Submit][St ...

  5. Bzoj 1010: [HNOI2008]玩具装箱toy(斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MB Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定 ...

  6. BZOJ 1010 [HNOI2008]玩具装箱toy

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7184  Solved: 2724[Submit][St ...

  7. BZOJ 1010: [HNOI2008]玩具装箱toy(斜率优化dp)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题意: 思路: 容易得到朴素的递归方程:$dp(i)=min(dp(i),dp(k)+(i-k ...

  8. BZOJ 1010 [HNOI2008]玩具装箱toy:斜率优化dp

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题意: 有n条线段,长度分别为C[i]. 你需要将所有的线段分成若干组,每组中线段的 ...

  9. BZOJ.1010.[HNOI2008]玩具装箱toy(DP 斜率优化/单调队列 决策单调性)

    题目链接 斜率优化 不说了 网上很多 这的比较详细->Click Here or Here //1700kb 60ms #include<cstdio> #include<cc ...

随机推荐

  1. Unity3d Gis 坐标转换

    最近在做unity3d与Gis结合的项目,最基本的就是坐标的转换问题,比如把经纬度为(166.23.9.27 , 39.55.15.74) 转换到unity里面成相应的位置点,废话不多说 上代码: u ...

  2. 买手机时几GB+几GB啥意思

    48GB 就是你每次下载手机软件呀.浏览图片呀.这些东西都放在48G里.你每次查看手机内存,就会看到你的48G用了多少.但是你什么时候看到你的4GB用了多少,都是那些360加速球呀提示你手机内存占用过 ...

  3. git 指定用户名密码更新代码

    使用git 更新代码 如何修改git 的密码一直令人费解,百度一堆也没给出答案.下面给一种替代方案. 例如:我们正常的代码地址 http://172.16.210.112/project/test.g ...

  4. 开发一个c#的数据库连接池

    c#操作数据库是一个经典,用习惯了以后真感觉不错,很简单的.现在很多关系数据库都支持c#.c#的ADO.NET规范都遵守. 对于一般的设置,ADO.NET都放在数据库连接字符串上.比如池化,连接超时等 ...

  5. JS基础——数组API之数组操作(filter、map、some、every、sort)

    var arr = [1,2,3,4];   forEach arr.forEach((item,index,arr) => { console.log(item) //结果为1,2,3,4 } ...

  6. JDBC编程:使用 Statement 修改数据库

    获取数据连接后,即可对数据库中的数据进行修改和查看.使用 Statement 接口可以对数据库中的数据进行修改,下面是程序演示. /** * 获取数据库连接,并使用SQL语句,向数据库中插入记录 */ ...

  7. Percona-Tookit工具包之pt-kill

      Preface       Sometimes,we are determined to kill some MySQL connections which are occupying huge ...

  8. Linux下NFS服务器的搭建与配置(转载)

    一.NFS服务简介 NFS 就是 Network FileSystem 的缩写,最早之前是由sun 这家公司所发展出来的. 它最大的功能就是可以透过网络,让不同的机器.不同的操作系统.可以彼此分享个别 ...

  9. sql sever 基础 练习题

    --1. 求半径2米,高3米的圆柱体体积. declare r @hight float,@r float,@ratio float ,@ v float --声明变量 set @hight=3 -- ...

  10. Layabox进阶之资源加载

    资源加载失败,图片资源默认类型是image 如果是sprite可能找不到. 资源的加载顺序,场景被加载出来时,要判断该场景的资源是否都已经加载到. 点击A界面弹出来B界面,A界面的资源要在B界面之前加 ...