Description

在一个篮球联赛里,有n支球队,球队的支出是和他们的胜负场次有关系的,具体来说,第i支球队的赛季总支出是Ci*x2+Di*y2,Di<=Ci。(赢得多,给球员的奖金就多嘛)

其中x,y分别表示这只球队本赛季的胜负场次。现在赛季进行到了一半,每只球队分别取得了a[i]场胜利和b[i]场失利。而接下来还有m场比赛要进行。问联盟球队的最小总支出是多少。

Input

第一行n,m

接下来n行每行4个整数a[i],b[i],Ci,Di

再接下来m行每行两个整数s,t表示第s支队伍和第t支队伍之间将有一场比赛,注意两只队间可能有多场比赛。

Output

输出总支出的最小值。

Sample Input

3 3
1 0 2 1
1 1 10 1
0 1 3 3
1 2
2 3
3 1

Sample Output

43

Solution

费用流。

对于每个球队设点\(A_i\),每场未确定的比赛设\(B_i\),那么有一个比较显然的框架:

  • 对于每个点\(A_i\),\(A_i\)到\(t\)连边,容量为剩下的场次中\(i\)最多可以赢的次数,这个次数设为\(mx_i\)。
  • 对于每个点\(B_i\),连边\((s,B_i),(B_i,x),(B_i,y)\),其中\(x,y\)表示这场比赛的双方,容量都为\(1\)。

很显然可以知道这个图的每一种最大流代表一种方案,现在我们的目的就是要给这个图的边加权,使得费用最小。

考虑一场比赛都没进行的时候(题目给出的结果不算),假设每支球队每场都输了,那么当前有一个总代价,然后比了一场比赛,那么必然就有一支球队输场\(-1\),胜场\(+1\),设原来赢了\(a\)场,输了\(b\)场,那么新增的代价就是:

\[\begin{align}
&c_i(a+1)^2+d_i(b-1)^2-c_ia^2-d_ib^2\\
=&c_i+d_i+2c_ia-2d_ib
\end{align}
\]

注意到随着胜场的增多,败场的减小,这个式子是单调递增的,也就是说,我们可以利用拆边的思想建图。

那么建图修改为:

  • 对于每个点\(A_i\),向\(t\)连\(mx_i\)条边,容量为\(1\),费用依次递增,也就是上面那个式子。
  • 其他的边费用均为\(0\)。

然后跑最小费用最大流,加上已经确定的花费,就是总代价了。

#include<bits/stdc++.h>
using namespace std; void read(int &x) {
x=0;int f=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-f;
for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';x*=f;
} void print(int x) {
if(x<0) putchar('-'),x=-x;
if(!x) return ;print(x/10),putchar(x%10+48);
}
void write(int x) {if(!x) putchar('0');else print(x);putchar('\n');} #define sqr(x) ((x)*(x)) const int maxn = 1e5+10;
const int inf = 1e9; int n,m,s,t,tot=1,cost;
int head[maxn],vis[maxn],dis[maxn],a[maxn],b[maxn],C[maxn],D[maxn],l[maxn],fr[maxn],pre[maxn];
struct edge{int to,nxt,w,c;}e[maxn<<1]; void add(int u,int v,int w,int c) {e[++tot]=(edge){v,head[u],w,c},head[u]=tot;}
void ins(int u,int v,int w,int c) {add(u,v,w,c),add(v,u,0,-c);} int bfs() {
memset(dis,63,4*(t+1));
memset(vis,0,4*(t+1));
queue<int > q;q.push(s);dis[s]=0,vis[s]=1;
while(!q.empty()) {
int now=q.front();q.pop(),vis[now]=0;
for(int i=head[now];i;i=e[i].nxt)
if(e[i].w>0&&dis[e[i].to]>dis[now]+e[i].c) {
dis[e[i].to]=dis[now]+e[i].c;
if(!vis[e[i].to]) vis[e[i].to]=1,q.push(e[i].to);
}
}return dis[t]<inf;
} int dfs(int x,int f) {
vis[x]=1;
if(x==t) return cost+=f*dis[t],f;
int used=0;
for(int i=head[x];i;i=e[i].nxt)
if((e[i].to==t||!vis[e[i].to])&&e[i].w>0&&dis[e[i].to]==dis[x]+e[i].c) {
int d=dfs(e[i].to,min(f-used,e[i].w));
if(d>0) e[i].w-=d,e[i^1].w+=d,used+=d;
if(used==f) break;
}return used;
} int mcmf() {
cost=0;while(bfs()) dfs(s,inf);return cost;
} int main() {
read(n),read(m);s=n+m+1,t=s+1;
for(int i=1;i<=n;i++) read(a[i]),read(b[i]),read(C[i]),read(D[i]);
for(int i=1,x,y;i<=m;i++) {
read(x),read(y),l[x]++,l[y]++;b[x]++,b[y]++;
ins(s,i+n,1,0),ins(i+n,x,1,0),ins(i+n,y,1,0);
}
int ans=0;
for(int i=1;i<=n;i++) ans+=C[i]*sqr(a[i])+D[i]*sqr(b[i]);
for(int i=1;i<=n;i++)
for(int j=1;j<=l[i];j++) ins(i,t,1,C[i]+D[i]+2*C[i]*a[i]-2*D[i]*b[i]),a[i]++,b[i]--;
write(ans+mcmf());
return 0;
}

[BZOJ1449] [JSOI2009]球队收益 / [BZOJ2895] 球队预算的更多相关文章

  1. BZOJ1449[JSOI2009]球队收益&BZOJ2895球队预算——最小费用最大流

    题目描述 输入 输出 一个整数表示联盟里所有球队收益之和的最小值. 样例输入 3 3 1 0 2 1 1 1 10 1 0 1 3 3 1 2 2 3 3 1 样例输出 43 提示   要求总费用最低 ...

  2. 【bzoj1449/bzoj2895】[JSOI2009]球队收益/球队预算 费用流

    题目描述 输入 输出 一个整数表示联盟里所有球队收益之和的最小值. 样例输入 3 3 1 0 2 1 1 1 10 1 0 1 3 3 1 2 2 3 3 1 样例输出 43 题解 费用流 由于存在一 ...

  3. 【BZOJ-1449&2895】球队收益&球队预算 最小费用最大流

    1449: [JSOI2009]球队收益 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 648  Solved: 364[Submit][Status][ ...

  4. 【BZOJ1449】[JSOI2009]球队收益(网络流,费用流)

    [BZOJ1449][JSOI2009]球队收益(网络流,费用流) 题面 BZOJ 洛谷 题解 首先对于一支队伍而言,总共进行多少场比赛显然是已知的,假设是\(n_i\)场,那么它的贡献是:\(C_i ...

  5. Bzoj1449 [JSOI2009]球队收益

    Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 741  Solved: 423 Description Input Output 一个整数表示联盟里所有球 ...

  6. 【BZOJ】【1449】【JSOI2009】球队收益

    网络流/费用流/二分图最小权匹配 题解:http://blog.csdn.net/huzecong/article/details/9119741 太神了!由于一赢一输不好建图,就先假设全部都输,再将 ...

  7. bzoj 1449 [JSOI2009]球队收益(费用拆分,最小费用流)

    1449: [JSOI2009]球队收益 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 547  Solved: 302[Submit][Status][ ...

  8. BZOJ 1449: [JSOI2009]球队收益( 最小费用最大流)

    先考虑假如全部输了的收益. 再考虑每场比赛球队赢了所得收益的增加量,用这个来建图.. --------------------------------------------------------- ...

  9. 【BZOJ1449】 球队收益

    BZOJ1449 球队收益 Output 一个整数表示联盟里所有球队收益之和的最小值. Sample Input 3 3 1 0 2 1 1 1 10 1 0 1 3 3 1 2 2 3 3 1 Sa ...

随机推荐

  1. 【mvrp多协议vlan注册协议给予三种注册方式的验证】

    MVRP 多vlan注册协议给予三种注册模式的配置 一:根据项目需求搭建好拓扑图如下 二:配置: 首先对项目做理论分析,sw1,sw2,sw3所组成的直连网络中,为使不同的PC之间进行通信,按vlan ...

  2. css表格

    今天写某个平台的前端数据展示 主要使用表格展示 正好复习总结一下css的表格 首先说说thead.tbody.tfoot <thead></thead> <tbody&g ...

  3. php+sqlserver处理读取decimal 类型数据,不满1的数字会去掉0的问题

    php+sqlserver处理读取decimal 类型数据,如果数据不满1,会去掉0的问题.比如读取的数据是 0.05,会显示 .05 function convert_number($number) ...

  4. vi/vim连续注释

    知识点: 1-可视块模式方法 2-替换方法 3-自定义快捷键方式 今天刚好重新在linux上手工搭建完Lamp环境,用来下vi操作,一段时间不用就有些生疏了,正好经常要注释,回顾下自己会的方法,小结一 ...

  5. 阻塞队列之LinkedBlockingQueue

    概述 LinkedBlockingQueue内部由单链表实现,只能从head取元素,从tail添加元素.添加元素和获取元素都有独立的锁,也就是说LinkedBlockingQueue是读写分离的,读写 ...

  6. elasticsearch 5.x 系列之四(索引模板的使用,详细得不要不要的)

    1,首先看一下下面这个索引模板 curl -XPUT "master:9200/_template/template_1?pretty" -H 'Content-Type: app ...

  7. Preparing Cities for Robot Cars【城市准备迎接自动驾驶汽车】

    Preparing Cities for Robot Cars The possibility of self-driving robot cars has often seemed like a f ...

  8. 字典树(Trie)的学习笔记

    按照一本通往下学,学到吐血了... 例题1 字典树模板题吗. 先讲讲字典树: 给出代码(太简单了...)! #include<cstdio> #include<cstring> ...

  9. Matplotlib 图表的样式参数

    1. import numpy as np import pandas as pd import matplotlib.pyplot as plt % matplotlib inline # 导入相关 ...

  10. python2.7练习小例子(二十二)

        22):题目:有一分数序列:2/1,3/2,5/3,8/5,13/8,21/13...求出这个数列的前20项之和.     程序分析:请抓住分子与分母的变化规律. #!/usr/bin/pyt ...