Modular Inverse (拓展欧几里得求逆元)
The modular modular multiplicative inverse of an integer a modulo m is an integer xsuch that a-1≡x (mod m). This is equivalent to ax≡1 (mod m).
Input
There are multiple test cases. The first line of input is an integer T ≈ 2000 indicating the number of test cases.
Each test case contains two integers 0 < a ≤ 1000 and 0 < m ≤ 1000.
Output
For each test case, output the smallest positive x. If such x doesn't exist, output "Not Exist".
Sample Input
3
3 11
4 12
5 13
Sample Output
4
Not Exist
8
References
今晚实在是想吐槽一下这个题,很无奈啊,本来想四题签到跑路,被这个题卡了2个小时,首先暴力枚举得没过,然后翻板子在拓展欧几里的找到了类似得题目,把板子搞上,疯狂wa,wa到自闭,结果是一组m为1时的特例为1,程序输出为0,还是太菜了,真************(疯狂喷自己)
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<queue>
#include<stack>
#include<set>
#include<vector>
#include<map>
#include<cmath>
const int maxn=1e5+5;
typedef long long ll;
using namespace std;
int extend_gcd(int a,int b,int &x,int &y)
{
if(a==0&&b==0)
{
return -1;
}
if(b==0)
{
x=1;y=0;
return a;
}
int d=extend_gcd(b,a%b,y,x);
y-=a/b*x;
return d;
}
int mod_reverse(int a,int n)
{
int x,y;
int d=extend_gcd(a,n,x,y);
if(d==1)return(x%n+n)%n;
else return -1;
}
int main()
{
int T;
cin>>T;
while(T--)
{
int a,n;
cin>>a>>n;
if(n==1)
{
cout<<1<<endl;
continue;
}
if(__gcd(a,n)!=1)
{
cout<<"Not Exist"<<endl;
continue;
}
cout<<mod_reverse(a,n)<<endl;
}
return 0;
}
Modular Inverse (拓展欧几里得求逆元)的更多相关文章
- ZOJ 3609 Modular Inverse(拓展欧几里得求最小逆元)
Modular Inverse Time Limit: 2 Seconds Memory Limit: 65536 KB The modular modular multiplicative ...
- gcd模板(欧几里得与扩展欧几里得、拓展欧几里得求逆元)
gcd(欧几里得算法辗转相除法): gcd ( a , b )= d : 即 d = gcd ( a , b ) = gcd ( b , a mod b ):以此式进行递归即可. 之前一直愚蠢地以为辗 ...
- hdu_1576A/B(扩展欧几里得求逆元)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 A/B Time Limit: 1000/1000 MS (Java/Others) Me ...
- POJ 1061 青蛙的约会(拓展欧几里得求同余方程,解ax+by=c)
青蛙的约会 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 122871 Accepted: 26147 Descript ...
- ZOJ 3593 One Person Game(拓展欧几里得求最小步数)
One Person Game Time Limit: 2 Seconds Memory Limit: 65536 KB There is an interesting and simple ...
- 拓展欧几里得求 ax + by = c的通解(a >=0, b >= 0)
#include <iostream> #include <cstdio> #include <algorithm> #include <vector> ...
- 扩展欧几里得模板&逆元求法
拓展欧几里得: 当 gcd ( a , b )= d 时,求绝对值和最小的 x , y 使得 x * a + y * b = d : d = gcd ( a , b ) = gcd ( b , a m ...
- POJ 2891 Strange Way to Express Integers(拓展欧几里得)
Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express ...
- Looooops(求解同余方程、同余方程用法)【拓展欧几里得】
Looooops(点击) A Compiler Mystery: We are given a C-language style for loop of type for (variable = A; ...
随机推荐
- oracle 通过序列实现某字段自增
-- 创建表 create table items( id int primary key, name ) not null, price int not null, detail ), pic ), ...
- jqgrid控件列分组
<%-- builed by manage.aspx.cmt [ver:2014.48.11] at 2014/10/11 16:48:33 --%> <%@ Page Langua ...
- 第十三课 Actionlib(2)
上节课讲到了客户端,这节课讲解一下服务器 1.创建服务器源文件touch fibonacciserver.cpp 2.编写源文件 3.修改CMakeLists.txt 4.编译之catkin_make ...
- Part8-不用内存怎么行_2440内存初始化lesson2
1.2440地址空间 先去找PCB原理图,看CPU引出的内存地址线和数据线的宽度. 说明内存的其实地址是0x30000000为起始地址. 初始化内存其实是去初始化存储器控制器,只有初始化好这个存储器控 ...
- psimpl_v7_win32_demo
psimpl - generic n-dimensional polyline simplification 通用N维折线简化程序 Author - Elmar de Koning 作者 - Elma ...
- cad转shapefile文件
private ESRI.ArcGIS.Controls.AxTOCControl axTOCControl1; private ESRI.ArcGIS.Controls.AxLicenseContr ...
- ParameterizedType的作用
public interface ParameterizedType extends Type subParam.Java package com.example.test; public clas ...
- 三羊献瑞——第六届蓝桥杯C语言B组(省赛)第三题
原创 三羊献瑞 观察下面的加法算式: 祥 瑞 生 辉 + 三 羊 献 瑞 ------------------- 三 羊 生 瑞 气 (如果有对齐问题,可以参看[图1.jpg]) 其中,相同的汉字代表 ...
- .net core 结合nlog使用Elasticsearch , Logstash, Kibana
什么是ELK ELK是三个开源软件的缩写,分别表示:Elasticsearch , Logstash, Kibana , 它们都是开源软件.新增了一个FileBeat,它是一个轻量级的日志收集处理工具 ...
- lfs原理