POJ 3304 Segments (直线和线段相交判断)
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 7739 | Accepted: 2316 |
Description
Given n segments in the two dimensional space, write a program, which determines if there exists a line such that after projecting these segments on it, all projected segments have at least one point in common.
Input
Input begins with a number T showing the number of test cases and then, T test cases follow. Each test case begins with a line containing a positive integer n ≤ 100 showing the number of segments. After that, n lines containing four real numbers x1 y1 x2 y2 follow, in which (x1, y1) and (x2, y2) are the coordinates of the two endpoints for one of the segments.
Output
For each test case, your program must output "Yes!", if a line with desired property exists and must output "No!" otherwise. You must assume that two floating point numbers a and b are equal if |a - b| < 10-8.
Sample Input
3
2
1.0 2.0 3.0 4.0
4.0 5.0 6.0 7.0
3
0.0 0.0 0.0 1.0
0.0 1.0 0.0 2.0
1.0 1.0 2.0 1.0
3
0.0 0.0 0.0 1.0
0.0 2.0 0.0 3.0
1.0 1.0 2.0 1.0
Sample Output
Yes!
Yes!
No!
Source
解题思路:如果有存在这样的直线,过投影相交区域作直线的垂线,该垂线必定与每条线段相交,问题转化为问是否存在一条线和所有线段相交
/************************************************************
* Author : kuangbin
* Email : kuangbin2009@126.com
* Last modified : 2013-07-13 20:57
* Filename : POJ3304Segments.cpp
* Description :
* *********************************************************/ #include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
#include <map>
#include <vector>
#include <set>
#include <string>
#include <math.h> using namespace std; const double eps = 1e-;
int sgn(double x)
{
if(fabs(x) < eps)return ;
if(x < ) return -;
return ;
}
struct Point
{
double x,y;
Point(){}
Point(double _x,double _y)
{
x = _x;y = _y;
}
Point operator -(const Point &b)const
{
return Point(x - b.x,y - b.y);
}
double operator ^(const Point &b)const
{
return x*b.y - y*b.x;
}
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
};
struct Line
{
Point s,e;
Line(){}
Line(Point _s,Point _e)
{
s = _s;e = _e;
}
};
double xmult(Point p0,Point p1,Point p2) //p0p1 X p0p2
{
return (p1-p0)^(p2-p0);
}
bool Seg_inter_line(Line l1,Line l2) //判断直线l1和线段l2是否相交
{
return sgn(xmult(l2.s,l1.s,l1.e))*sgn(xmult(l2.e,l1.s,l1.e)) <= ;
}
double dist(Point a,Point b)
{
return sqrt( (b - a)*(b - a) );
}
const int MAXN = ;
Line line[MAXN];
bool check(Line l1,int n)
{
if(sgn(dist(l1.s,l1.e)) == )return false;
for(int i = ;i < n;i++)
if(Seg_inter_line(l1,line[i]) == false)
return false;
return true;
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n;
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
double x1,y1,x2,y2;
for(int i = ; i < n;i++)
{
scanf("%lf%lf%lf%lf",&x1,&y1,&x2,&y2);
line[i] = Line(Point(x1,y1),Point(x2,y2));
}
bool flag = false;
for(int i = ;i < n;i++)
for(int j = ; j < n;j++)
if(check(Line(line[i].s,line[j].s),n) || check(Line(line[i].s,line[j].e),n)
|| check(Line(line[i].e,line[j].s),n) || check(Line(line[i].e,line[j].e),n) )
{
flag = true;
break;
}
if(flag)
printf("Yes!\n");
else printf("No!\n");
}
return ;
}
POJ 3304 Segments (直线和线段相交判断)的更多相关文章
- POJ 3304 Segments[直线与线段相交]
Segments Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13514 Accepted: 4331 Descrip ...
- POJ 3304 Segments(线的相交判断)
Description Given n segments in the two dimensional space, write a program, which determines if ther ...
- POJ 1039 Pipe(直线和线段相交判断,求交点)
Pipe Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 8280 Accepted: 2483 Description ...
- POJ 3304 Segments 判断直线和线段相交
POJ 3304 Segments 题意:给定n(n<=100)条线段,问你是否存在这样的一条直线,使得所有线段投影下去后,至少都有一个交点. 思路:对于投影在所求直线上面的相交阴影,我们可以 ...
- POJ 3304 Segments(判断直线与线段是否相交)
题目传送门:POJ 3304 Segments Description Given n segments in the two dimensional space, write a program, ...
- 判断直线与线段相交 POJ 3304 Segments
题意:在二维平面中,给定一些线段,然后判断在某直线上的投影是否有公共点. 转化,既然是投影,那么就是求是否存在一条直线L和所有的线段都相交. 证明: 下面给出具体的分析:先考虑一个特殊的情况,即n=1 ...
- POJ 3304 Segments(计算几何:直线与线段相交)
POJ 3304 Segments 大意:给你一些线段,找出一条直线可以穿过全部的线段,相交包含端点. 思路:遍历全部的端点,取两个点形成直线,推断直线是否与全部线段相交,假设存在这种直线,输出Yes ...
- poj 3304(直线与线段相交)
传送门:Segments 题意:线段在一个直线上的摄影相交 求求是否存在一条直线,使所有线段到这条直线的投影至少有一个交点 分析:可以在共同投影处作原直线的垂线,则该垂线与所有线段都相交<==& ...
- poj 3304 Segments (题意理解出错,错误的只枚举了过线段的直线)
//枚举过每一条线段的直线, //再判断其他线段的点在直线上或被直线穿过 //即求直线与线段相交(叉积) #include<stdio.h> #include<math.h> ...
随机推荐
- HDU 2064 (递推) 汉诺塔III
将柱子从左到右依次编号为A.B.C 设将n个盘子从一端移动到另一端的最少步数为f(n) 则f(n)和f(n-1)的递推关系为:f(n) = 3 × f(n-1) + 2 初始状态A柱子上面有n个盘子, ...
- 51nod1627 瞬间移动
打表可以看出来是组合数...妈呀为什么弄成n+m-4,n-1,m-3就错啊... //打表可以看出来是组合数...妈呀为什么弄成n+m-4,n-1,m-3就错啊... #include<cstd ...
- BZOJ 2429 聪明的猴子
kruskal. #include<iostream> #include<cstdio> #include<cstring> #include<algorit ...
- Java 碰撞的球 MovingBall (整理)
package demo; /** * Java 碰撞的球 MovingBall (整理) * 声明: * 这份源代码没有注释,已经忘记了为什么要写他了,基本上应该是因为当时觉得好玩吧. * 有时候想 ...
- python练习程序(c100经典例12)
题目: 判断101-200之间有多少个素数,并输出所有素数. for i in range(101,201): flag=0; for j in range(2,int(i**(1.0/2))): i ...
- JavaScript备忘录-逻辑运算符
关于 || 和 && 运算符 var name=(document.getElementById('txtName') || '') && document.getEl ...
- Android 实现切换主题皮肤功能(类似于众多app中的 夜间模式,主题包等)
首先来个最简单的一键切换主题功能,就做个白天和晚上的主题好了. 先看我们的styles文件: <resources> <!-- Base application theme. --& ...
- testng之listener
这周在给人培训selenium+testng框架时,讲到listener这块发现对listener并没有完全了解,于是自己又重新学习了下. 以下是 TestNG 提供的几种监听器: IAnnotati ...
- Selenium2Library系列 keywords 之 _SelectElementKeywords 之 select_all_from_list(self, locator)
def select_all_from_list(self, locator): """Selects all values from multi-select list ...
- 分享我的PL/SQL的优化设置,为开发全面提速
打开[工具]–[首选项]: 1.登陆历史:勾选[存储历史]和[带口令存储],方便下次登陆,免去每次都输入密码的烦恼: 2.编辑器: a.勾选[语法高亮]允许: b.关键词大小写选择大写: c.配置自动 ...