Elasticsearch 5.0 关于term querymatch query的认识

一、基本情况

前言:term query和match query牵扯的东西比较多,例如分词器、mapping、倒排索引等。我结合官方文档中的一个实例,谈谈自己对此处的理解

  • string类型在es5.*分为text和keyword。text是要被分词的,整个字符串根据一定规则分解成一个个小写的term,keyword类似es2.3中not_analyzed的情况。

string数据put到elasticsearch中,默认是text。

NOTE:默认分词器为standard analyzer。"Quick Brown Fox!"会被分解成[quick,brown,fox]写入倒排索引

  • term query会去倒排索引中寻找确切的term,它并不知道分词器的存在。这种查询适合keywordnumericdate
  • match query知道分词器的存在。并且理解是如何被分词的

总的来说有如下:

  • term query 查询的是倒排索引中确切的term
  • match query 会对filed进行分词操作,然后在查询

二、测试(1)

  1. 准备数据:
POST /termtest/termtype/1
{
"content":"Name"
}
POST /termtest/termtype/2
{
"content":"name city"
}
  1. 查看数据是否导入
GET /termtest/_search
{
"query":
{
"match_all": {}
}
}
  • 结果:
{
"took": 1,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 2,
"max_score": 1,
"hits": [
{
"_index": "termtest",
"_type": "termtype",
"_id": "2",
"_score": 1,
"_source": {
"content": "name city"
}
},
{
"_index": "termtest",
"_type": "termtype",
"_id": "1",
"_score": 1,
"_source": {
"content": "Name"
}
}
]
}
}

如上说明,数据已经被导入。该处字符串类型是text,也就是默认被分词了

  1. 做如下查询:
POST /termtest/_search
{
"query":{
"term":{
"content":"Name"
}
}
}
  • 结果
{
"took": 1,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 0,
"max_score": null,
"hits": []
}
}

分析结果:因为是默认被standard analyzer分词器分词,大写字母全部转为了小写字母,并存入了倒排索引以供搜索。term是确切查询,

必须要匹配到大写的Name。所以返回结果为空

POST /termtest/_search
{
"query":{
"match":{
"content":"Name"
}
}
}
  • 结果
{
"took": 2,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 2,
"max_score": 0.2876821,
"hits": [
{
"_index": "termtest",
"_type": "termtype",
"_id": "1",
"_score": 0.2876821,
"_source": {
"content": "Name"
}
},
{
"_index": "termtest",
"_type": "termtype",
"_id": "2",
"_score": 0.25811607,
"_source": {
"content": "name city"
}
}
]
}
}

分析结果: 原因(1):默认被standard analyzer分词器分词,大写字母全部转为了小写字母,并存入了倒排索引以供搜索,

原因(2):match query先对filed进行分词,分词为"name",再去匹配倒排索引中的term

三、测试(2)

下面是官网实例官网实例

  1. 导入数据
PUT my_index
{
"mappings": {
"my_type": {
"properties": {
"full_text": {
"type": "text"
},
"exact_value": {
"type": "keyword"
}
}
}
}
}
PUT my_index/my_type/1
{
"full_text": "Quick Foxes!",
"exact_value": "Quick Foxes!"
}

先指定类型,再导入数据

  • full_text: 指定类型为text,是会被分词
  • exact_value: 指定类型为keyword,不会被分词
  • full_text: 会被standard analyzer分词为如下terms [quick,foxes],存入倒排索引
  • exact_value: 只有[Quick Foxes!]这一个term会被存入倒排索引
  1. 做如下查询
GET my_index/my_type/_search
{
"query": {
"term": {
"exact_value": "Quick Foxes!"
}
}
}

结果:

{
"took": 1,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 1,
"max_score": 0.2876821,
"hits": [
{
"_index": "my_index",
"_type": "my_type",
"_id": "1",
"_score": 0.2876821,
"_source": {
"full_text": "Quick Foxes!",
"exact_value": "Quick Foxes!"
}
}
]
}
}

exact_value包含了确切的Quick Foxes!,因此被查询到

GET my_index/my_type/_search
{
"query": {
"term": {
"full_text": "Quick Foxes!"
}
}
}

结果:

{
"took": 4,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 0,
"max_score": null,
"hits": []
}
}

full_text被分词了,倒排索引中只有quickfoxes。没有Quick Foxes!

GET my_index/my_type/_search
{
"query": {
"term": {
"full_text": "foxes"
}
}
}

结果:

{
"took": 2,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 1,
"max_score": 0.25811607,
"hits": [
{
"_index": "my_index",
"_type": "my_type",
"_id": "1",
"_score": 0.25811607,
"_source": {
"full_text": "Quick Foxes!",
"exact_value": "Quick Foxes!"
}
}
]
}
}

full_text被分词,倒排索引中只有quickfoxes,因此查询foxes能成功

GET my_index/my_type/_search
{
"query": {
"match": {
"full_text": "Quick Foxes!"
}
}
}

结果:

{
"took": 3,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 1,
"max_score": 0.51623213,
"hits": [
{
"_index": "my_index",
"_type": "my_type",
"_id": "1",
"_score": 0.51623213,
"_source": {
"full_text": "Quick Foxes!",
"exact_value": "Quick Foxes!"
}
}
]
}
}

match query会先对自己的query string进行分词。也就是"Quick Foxes!"先分词为quick和foxes。然后在去倒排索引中查询,此处full_text是text类型,被分词为quick和foxes

因此能匹配上。

Elasticsearch 5.0 中term 查询和match 查询的认识的更多相关文章

  1. [Elasticsearch] 全文搜索 (一) 基础概念和match查询

    全文搜索(Full Text Search) 现在我们已经讨论了搜索结构化数据的一些简单用例,是时候开始探索全文搜索了 - 如何在全文字段中搜索来找到最相关的文档. 对于全文搜索而言,最重要的两个方面 ...

  2. Python Elasticsearch api,组合过滤器,term过滤器,正则查询 ,match查询,获取最近一小时的数据

    Python Elasticsearch api   描述:ElasticSearch是一个基于Lucene的搜索服务器.它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口.下 ...

  3. Elasticsearch 5.x 关于term query和match query的认识

    http://blog.csdn.net/yangwenbo214/article/details/54142786 一.基本情况 前言:term query和match query牵扯的东西比较多, ...

  4. Elasticsearch中的Term查询和全文查询

    目录 前言 Term 查询 exists 查询 fuzzy 查询 ids 查询 prefix 查询 range 查询 regexp 查询 term 查询 terms 查询 terms_set 查询 t ...

  5. Elasticsearch 7.0 正式发布,盘他!

    Elastic{ON}北京分享了Elasticsearch7.0在Speed,Scale,Relevance等方面的很多新特性. 比快更快,有传说中的那么牛逼吗?盘他! 通过本文,你能了解到: Ela ...

  6. Elasticsearch 7.0 发布都有哪些新特性

    了解about云知识星球 .pcb{margin-right:0} 问题导读 1.Elasticsearch&Kibana 7.哪些需要修改? 2.Elasticsearch7 有哪些新特性? ...

  7. elasticsearch 查询(match和term)

    elasticsearch 查询(match和term) es中的查询请求有两种方式,一种是简易版的查询,另外一种是使用JSON完整的请求体,叫做结构化查询(DSL). 由于DSL查询更为直观也更为简 ...

  8. (转载)elasticsearch 查询(match和term)

    原文地址:https://www.cnblogs.com/yjf512/p/4897294.html elasticsearch 查询(match和term) es中的查询请求有两种方式,一种是简易版 ...

  9. (转)Elasticsearch查询规则------match和term

    es种有两种查询模式,一种是像传递URL参数一样去传递查询语句,被称为简单搜索或查询字符串(query string)搜索,比如 GET /megacorp/employee/_search //查询 ...

随机推荐

  1. Fis3的前端模块化之路[基础篇]

    Fis3版本:v3.4.22 fis3是一个构建工具 解决前端开发中自动化工具.性能优化.模块化框架.开发规范.代码部署.开发流程等问题. 安装 npm install -g fis3 运行 fis3 ...

  2. 如何一步一步用DDD设计一个电商网站(七)—— 实现售价上下文

    阅读目录 前言 明确业务细节 建模 实现 结语 一.前言 上一篇我们已经确立的购买上下文和销售上下文的交互方式,传送门在此:http://www.cnblogs.com/Zachary-Fan/p/D ...

  3. 谈一下关于CQRS架构如何实现高性能

    CQRS架构简介 前不久,看到博客园一位园友写了一篇文章,其中的观点是,要想高性能,需要尽量:避开网络开销(IO),避开海量数据,避开资源争夺.对于这3点,我觉得很有道理.所以也想谈一下,CQRS架构 ...

  4. nodejs进阶(5)—接收请求参数

    1. get请求参数接收 我们简单举一个需要接收参数的例子 如果有个查找功能,查找关键词需要从url里接收,http://localhost:8000/search?keyword=地球.通过前面的进 ...

  5. Base64编码

    Base64编码 写在前面 今天在做一个Android app时遇到了一个问题:Android端采用ASE对称加密的数据在JavaWeb(jre1.8.0_7)后台解密时,居然解密失败了!经过测试后发 ...

  6. Android注解使用之注解编译android-apt如何切换到annotationProcessor

    前言: 自从EventBus 3.x发布之后其通过注解预编译的方式解决了之前通过反射机制所引起的性能效率问题,其中注解预编译所采用的的就是android-apt的方式,不过最近Apt工具的作者宣布了不 ...

  7. 多线程条件通行工具——AbstractQueuedSynchronizer

    本文原创,转载请注明出处! 参考文章: <"JUC锁"03之 公平锁(一)> <"JUC锁"03之 公平锁(二)> AbstractOw ...

  8. Web安全相关(四):过多发布(Over Posting)

    简介 过多发布的内容相对比较简单,因此,我只打算把原文中的一些关键信息翻译一下.原文链接如下: http://www.asp.net/mvc/overview/getting-started/gett ...

  9. 最新的 cocoaPods 安装方法

    经过努力终于发现了最新的 解决cocoaPods安装的办法: taobao Gems 源已停止维护,现由 ruby-china 提供镜像服务 第一步:安装rvm, 不管需不需要升级ruby,rvm可以 ...

  10. web.xml中welcome-file-list的作用

    今天尝试使用struts2+ urlrewrite+sitemesh部署项目,结果发现welcome-file-list中定义的欢迎页不起作用: <welcome-file-list> & ...