UVA - 1349          

                                   Optimal Bus Route Design

Time Limit: 3000MS

Memory Limit: Unknown

64bit IO Format: %lld & %llu

Description

A big city wants to improve its bus transportation system. One of the improvement is to add scenic routes which go es through attractive places. Your task is to construct a bus-route-plan for sight-seeing buses in a city.

You are given a set of scenic lo cations. For each of these given lo cations, there should be only one bus route that passes this lo cation, and that bus route should pass this lo cation exactly once. The number of bus routes is unlimited. However, each route should contain at least two scenic lo cations.

From location i to location j , there may or may not be a connecting street. If there is a street from location i to location j , then we say j is an out-neighbor of i . The length of the street from i to j is d (i, j) . The streets might be one way. So it may happen that there is a street from i to j , but no street from j to i . In case there is a street from i to j and also a street from j to i , the lengths d (i, j) and d (j, i) might be different. The route of each bus must follow the connecting streets and must be a cycle. For example, the route of Bus A might be from location 1 to location 2, from location 2 to location 3, and then from location 3 to location 1. The route of Bus B might be from location 4 to location 5, then from location 5 to location 4. The length of a bus route is the sum of the lengths of the streets in this bus route. The total length of the bus-route-plan is the sum of the lengths of all the bus routes used in the plan. A bus-route-plan is optimal if it has the minimum total length. You are required to compute the total length of an optimal bus-route-plan.

Input 

The input file consists of a number of test cases. The first line of each test case is a positive integer n , which is the number of locations. These n locations are denoted by positive integers 1, 2,..., n . The next n lines are information about connecting streets between these lo cations. The i -th line of these n lines consists of an even number of positive integers and a 0 at the end. The first integer is a lo cation j which is an out-neighbor of location i , and the second integer is d (i, j) . The third integer is another location j' which is an out-neighbor of i , and the fourth integer is d (i, j') , and so on. In general, the (2k - 1) th integer is a location t which is an out-neighbor of location i , and the 2k th integer is d (i, t) .

The next case starts immediately after these n lines. A line consisting of a single ` 0' indicates the end of the input file.

Each test case has at most 99 locations. The length of each street is a positive integer less than 100.

Output 

The output contains one line for each test case. If the required bus-route-plan exists, then the output is a positive number, which is the total length of an optimal bus-route-plan. Otherwise, the output is a letter `N'.

Sample Input 

3

2 2 3 1 0

1 1 3 2 0

1 3 2 7 0

8

2 3 3 1 0

3 3 1 1 4 4 0

1 2 2 7 0

5 4 6 7 0

4 4 3 9 0

7 4 8 5 0

6 2 5 8 8 1 0

6 6 7 2 0

3

2 1 0

3 1 0

2 1 0

0

Sample Output 

7

25

N

【思路】

二分图最佳完美匹配。

“只要每个点有唯一的后继,每个点恰好属于一个圈”。拆点后问题转化为二分图的最佳完美匹配问题。

【代码】

 #include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
#include<iostream>
#define FOR(a,b,c) for(int a=(b);a<(c);a++)
using namespace std; const int maxn = +;
const int INF = 1e9; struct Edge{ int u,v,cap,flow,cost;
}; struct MCMF {
int n,m,s,t;
int inq[maxn],a[maxn],d[maxn],p[maxn];
vector<int> G[maxn];
vector<Edge> es; void init(int n) {
this->n=n;
es.clear();
for(int i=;i<n;i++) G[i].clear();
}
void AddEdge(int u,int v,int cap,int cost) {
es.push_back((Edge){u,v,cap,,cost});
es.push_back((Edge){v,u,,,-cost});
m=es.size();
G[u].push_back(m-);
G[v].push_back(m-);
} bool SPFA(int s,int t,int& flow,int& cost) {
for(int i=;i<n;i++) d[i]=INF;
memset(inq,,sizeof(inq));
d[s]=; inq[s]=; p[s]=; a[s]=INF;
queue<int> q; q.push(s);
while(!q.empty()) {
int u=q.front(); q.pop(); inq[u]=;
for(int i=;i<G[u].size();i++) {
Edge& e=es[G[u][i]];
int v=e.v;
if(e.cap>e.flow && d[v]>d[u]+e.cost) {
d[v]=d[u]+e.cost;
p[v]=G[u][i];
a[v]=min(a[u],e.cap-e.flow); //min(a[u],..)
if(!inq[v]) { inq[v]=; q.push(v);
}
}
}
}
if(d[t]==INF) return false;
flow+=a[t] , cost+=a[t]*d[t];
for(int x=t; x!=s; x=es[p[x]].u) {
es[p[x]].flow+=a[t]; es[p[x]^].flow-=a[t];
}
return true;
}
int Mincost(int s,int t,int& cost) {
int flow=; cost=;
while(SPFA(s,t,flow,cost)) ;
return flow;
}
} mc; int n; int main() {
while(scanf("%d",&n)== && n) {
mc.init(n+n+);
int s=n+n,t=s+;
int u,v,w;
FOR(u,,n) {
while(scanf("%d",&v)== && v) {
scanf("%d",&w);
v--;
mc.AddEdge(u,n+v,,w);
}
mc.AddEdge(s,u,,); mc.AddEdge(u+n,t,,);
}
int flow,cost;
flow=mc.Mincost(s,t,cost);
if(flow<n) printf("N\n");
else printf("%d\n",cost);
}
return ;
}

UVa1349 Optimal Bus Route Design(二分图最佳完美匹配)的更多相关文章

  1. Uva1349Optimal Bus Route Design(二分图最佳完美匹配)(最小值)

    题意: 给定n个点的有向图问,问能不能找到若干个环,让所有点都在环中,且让权值最小,KM算法求最佳完美匹配,只不过是最小值,所以把边权变成负值,输出时将ans取负即可 这道题是在VJ上交的 #incl ...

  2. UVA1349 Optimal Bus Route Design 拆点法+最小费用最佳匹配

    /** 题目:UVA1349 Optimal Bus Route Design 链接:https://vjudge.net/problem/UVA-1349 题意:lrj入门经典P375 给n个点(n ...

  3. UVA - 1349 D - Optimal Bus Route Design

    4. D - Optimal Bus Route Design 题意:给出n(n<=100)个点的带权有向图,找出若干个有向圈,每个点恰好属于一个有向圈.要求权和尽量小. 注意即使(u,v)和( ...

  4. UVa 11383 少林决胜(二分图最佳完美匹配)

    https://vjudge.net/problem/UVA-11383 题意: 给定一个N×N矩阵,每个格子里都有一个正整数W(i,j).你的任务是给每行确定一个整数row(i),每列也确定一个整数 ...

  5. Ants(二分图最佳完美匹配)

    Ants Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 6904   Accepted: 2164   Special Ju ...

  6. UVA - 1045 The Great Wall Game(二分图最佳完美匹配)

    题目大意:给出棋盘上的N个点的位置.如今问将这些点排成一行或者一列.或者对角线的最小移动步数(每一个点都仅仅能上下左右移动.一次移动一个) 解题思路:暴力+二分图最佳完美匹配 #include < ...

  7. 【LA4043 训练指南】蚂蚁 【二分图最佳完美匹配,费用流】

    题意 给出n个白点和n个黑点的坐标,要求用n条不相交的线段把他们连接起来,其中每条线段恰好连接一个白点和一个黑点,每个点恰好连接一条线段. 分析 结点分黑白,很容易想到二分图.其中每个白点对应一个X结 ...

  8. UVa 1349 - Optimal Bus Route Design(二分图最佳完美匹配)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  9. UVa 1349 (二分图最小权完美匹配) Optimal Bus Route Design

    题意: 给出一个有向带权图,找到若干个圈,使得每个点恰好属于一个圈.而且这些圈所有边的权值之和最小. 分析: 每个点恰好属于一个有向圈 就等价于 每个点都有唯一后继. 所以把每个点i拆成两个点,Xi  ...

随机推荐

  1. 如何在获取Datarow对象在其所属DataTable中的Index

    做项目的时候需要先select一个DataTable的子集,后来又需要子集中这些DataRow的Index, 这个需求本来就有些奇怪,网上也没搜到.刚开始走了很多弯路,后来发现一个简便方法 'dr是你 ...

  2. 一次利用MSSQL的SA账户提权获取服务器权限

    遇到小人,把服务器整走了 自己手里只有sql server的sa账号密码 模糊记起之前用这个账户提权读取文件的事 百度之,发现相关信息一堆堆 各种工具也用了不少 发现不是语法错误就是权限不够 无奈之下 ...

  3. .net 学习路线感想

    从上到大学到现在工作,已经有六年多了,发现学习编程到以开发为工作也是一个挺长的过程的. 大学中,从c语言到java.C#到其他各种语言的学习,还有其他知识的学习如:数据库(oracle.sql Ser ...

  4. SQL中使用的一些函数问题

    abs()取绝对值ceil()上取整floor()下取整initcap()使串中的所有单词的首字母变为大写substr()取子串 这些函数都是oracle的sql内置函数.

  5. Sprite Kit教程:初学者

    作者:Ray Wenderlich 原文出处:点击打开链接 http://www.raywenderlich.com/42699/spritekit-tutorial-for-beginners 转自 ...

  6. Java学习笔记——动态代理

    所谓动态,也就是说这个东西是可变的,或者说不是一生下来就有的.提到动态就不得不说静态,静态代理,个人觉得是指一个代理在程序中是事先写好的,不能变的,就像上一篇"Java学习笔记——RMI&q ...

  7. websocket以及自定义协议编程一些总结

    以下仅供自己翻阅,因为时间久了会忘2.发送缓冲区主要是为了处理发送前一些小内容,可以自己控制flush,或者write的不是那么频繁因为没必要.至于大内容就没必要了.3.其实tcp以上的通信协议也好, ...

  8. 关于javascript延迟加载图片

    今天在技术群中,有位童鞋问起了javascript延迟加载图片的问题,我在这就给大家说明下原理和实现方法. 延迟加载是通过自定义属性,把真实的img地址存到自定义属性中,如data-url=”img” ...

  9. Oracle数据库之视图与索引

    Oracle数据库之视图与索引 1. 视图简介 视图是基于一个表或多个表或视图的逻辑表,本身不包含数据,通过它可以对表里面的数据进行查询和修改. 视图基于的表称为基表,视图是存储在数据字典里的一条SE ...

  10. 对象的内置属性和js的对象之父Object()

    js中对象有constructor,valueOf(),toString()等内置属性和方法; 创建一个空对象的方法: var o = {}; 或者 var o= new Object(); o.co ...