bzoj3576: [Hnoi2014]江南乐
Description
小A是一个名副其实的狂热的回合制游戏玩家。在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏。 游戏的规则是这样的,首先给定一个数F,然后游戏系统会产生T组游戏。每一组游戏包含N堆石子,小A和他的对手轮流操作。每次操作时,操作者先选定一个不小于2的正整数M (M是操作者自行选定的,而且每次操作时可不一样),然后将任意一堆数量不小于F的石子分成M堆,并且满足这M堆石子中石子数最多的一堆至多比石子数最少的一堆多1(即分的尽量平均,事实上按照这样的分石子万法,选定M和一堆石子后,它分出来的状态是固定的)。当一个玩家不能操作的时候,也就是当每一堆石子的数量都严格小于F时,他就输掉。(补充:先手从N堆石子中选择一堆数量不小于F的石子分成M堆后,此时共有N+M-1)堆石子,接下来小A从这N+M-1堆石子中选择一堆数量不小于F的石子,依此类推。
小A从小就是个有风度的男生,他邀请他的对手作为先手。小A现在想要知道,面对给定的一组游戏,而且他的对手也和他一样聪明绝顶的话,究竟谁能够获得胜利?
Input
输入第一行包含两个正整数T和F,分别表示游戏组数与给定的数。
接下来T行,每行第一个数N表示该组游戏初始状态下有多少堆石子。之后N个正整数,表示这N堆石子分别有多少个。
Output
输出一行,包含T个用空格隔开的0或1的数,其中0代表此时小A(后手)会胜利,而1代表小A的对手(先手)会胜利。
Sample Input
1 1
1 2
1 3
1 5
Sample Output
HINT
对于100%的数据,T<100,N<100,F<100000,每堆石子数量<100000。
以上所有数均为正整数。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#define maxn 100005
using namespace std;
char ch;
int n,T,tmp,f,x,sg[maxn];
bool bo[maxn*],ok,first=;
void read(int &x){
for (ok=,ch=getchar();!isdigit(ch);ch=getchar()) if (ch=='-') ok=;
for (x=;isdigit(ch);x=x*+ch-'',ch=getchar());
if (ok) x=-x;
}
void calc(int n){
if (n<f){sg[n]=;return;}
for (int i=;i<=n;i=n/(n/i)+)
for (int j=i;j<=i+&&j<=n;j++){
if (((n%j)&)&&sg[n/j+]==-) calc(n/j+);
if (((j-n%j)&)&&sg[n/j]==-) calc(n/j);
}
for (int i=;i<=n;i=n/(n/i)+)
for (int j=i,t;j<=i+&&j<=n;j++){
t=;
if ((n%j)&) t^=sg[n/j+];
if ((j-n%j)&) t^=sg[n/j];
bo[t]=;
}
for (int i=;;i++) if (!bo[i]){sg[n]=i;break;}
for (int i=;i<=n;i=n/(n/i)+)
for (int j=i,t;j<=i+&&j<=n;j++){
t=;
if ((n%j)&) t^=sg[n/j+];
if ((j-n%j)&) t^=sg[n/j];
bo[t]=;
}
}
int main(){
memset(sg,-,sizeof(sg));
for (read(T),read(f);T;T--){
read(n),tmp=;
for (int i=;i<=n;i++){
read(x);
if (sg[x]==-) calc(x);
tmp^=sg[x];
}
if (first) first=;
else putchar(' ');
printf("%d",(tmp!=));
}
puts("");
return ;
}
bzoj3576: [Hnoi2014]江南乐的更多相关文章
- bzoj 3576[Hnoi2014]江南乐 sg函数+分块预处理
3576: [Hnoi2014]江南乐 Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 1929 Solved: 686[Submit][Status ...
- 【BZOJ3576】江南乐(博弈论)
[BZOJ3576]江南乐(博弈论) 题面 BZOJ 洛谷 题解 无论一堆石头怎么拆分,都并不能改变它是一个\(Multi-SG\)的事实. 既然每一组的\(F\)都是固定的,那么我们预处理所有的可能 ...
- 洛谷 P3235 [HNOI2014]江南乐 解题报告
P3235 [HNOI2014]江南乐 Description 两人进行 T 轮游戏,给定参数 F ,每轮给出 N 堆石子,先手和后手轮流选择石子数大于等于 F 的一堆,将其分成任意(大于1)堆,使得 ...
- 【bzoj3576】 Hnoi2014—江南乐
http://www.lydsy.com/JudgeOnline/problem.php?id=3576 (题目链接) 题意 给出一个数$F$,然后$n$堆石子,每次操作可以把一堆不少于$F$的石子分 ...
- 【bzoj3576】[Hnoi2014]江南乐 博弈论+SG定理+数学
题目描述 两人进行 $T$ 轮游戏,给定参数 $F$ ,每轮给出 $N$ 堆石子,先手和后手轮流选择石子数大于等于 $F$ 的一堆,将其分成任意(大于1)堆,使得这些堆中石子数最多的和最少的相差不超过 ...
- 【bzoj3576】[Hnoi2014]江南乐 数论分块+博弈论
Description 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏. 游戏的规则是这样的,首先给定一个数F ...
- [HNOI2014]江南乐
Description 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏. 游戏的规则是这样的,首先给定一 ...
- 洛谷P3235 [HNOI2014]江南乐(Multi-SG)
题目描述 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏. 游戏的规则是这样的,首先给定一个数F,然后游戏系统 ...
- luogu P3235 [HNOI2014]江南乐
传送门 这题又是我什么时候做的(挠头) 首先是个和SG函数有关的博弈论,SG=0则先手必败.显然一堆石子就是一个游戏,而若干堆石子的SG值就是每堆SG的异或和,所以算出每堆石子SG就能知道答案 然后怎 ...
随机推荐
- 动态规划——数位dp
通过先前在<动态规划——背包问题>中关于动态规划的初探,我们其实可以看到,动态规划其实不是像凸包.扩展欧几里得等是具体的算法,而是一种在解决问题中决策的思想.在不同的题目中,我们都需要根据 ...
- php如何同时连接多个数据库
下面是一个函数能够保证连接多个数据库的下不同的表的函数,可以收藏一下,比较实用,测试过是有用的. function mysql_oper($oper,$db,$table,$where='1',$li ...
- boost库在工作(32)网络服务端之二
在这个例子里,服务器对象主要使用boost::asio::io_service对象,这个对象主要用来构造异步接收数据使用,接着定义boost::asio::ip::tcp::acceptor对象,这个 ...
- Unity3D 集成 Face++ FacePlusPlus httpClient http协议 byte数组转string
//開始由于要实现跨平台.考虑过用curl封装c++的dll(android *.so)的方式,在c#Dllimport实现 //后来发现Unity3D本身支持http协议.且face++的api都是 ...
- OpenCV LDA(Linnear Discriminant analysis)类的使用---OpenCV LDA演示样例
1.OpenCV中LDA类的声明 //contrib.hpp class CV_EXPORTS LDA { public: // Initializes a LDA with num_componen ...
- UML中的图
用例图.类图.包图.顺序图.协作图.状态图.活动图.构件图.部署图等 1.用例图 显示多个外部参与者以及他们与系统提供的用例之间的连接.用例是系统中的一个可以描述参与者与系统之间交互作用功能单元.用例 ...
- 深入探索C++对象模型-5
虚拟继承下的对象构造: 由于虚拟基类对象在子类中只能保持一个实例,那么,子类构造的时候调用父类的构造函数的时候必须保证虚拟基类对象不能够重复构造. 那么如何保证基类对象的唯一性? C++规定虚拟基类对 ...
- POJ 1985 Cow Marathon && POJ 1849 Two(树的直径)
树的直径:树上的最长简单路径. 求解的方法是bfs或者dfs.先找任意一点,bfs或者dfs找出离他最远的那个点,那么这个点一定是该树直径的一个端点,记录下该端点,继续bfs或者dfs出来离他最远的一 ...
- MySQL存储过程(一)
1.1 CREATE PROCEDURE (创建) CREATE PROCEDURE存储过程名 (参数列表) BEGIN SQL语句代码块 END 注意: 由括号包围的参数列必须总是存在.如果没有参 ...
- IP 转地址
1.需要 QQWry.Dat IP 地址数据库 2辅助类库 using System; using System.Collections.Generic; using System.IO; usin ...