在上一篇中,我已经讲解了展示marker基因的前两种图形,分别是tsne/umap图、热图,感兴趣的读者可以回顾一下。这一节我们继续学习堆叠小提琴图和气泡图。

3. 堆叠小提琴图展示marker基因

相比于其他可视化形式,小提琴图可以更直观地展示某一类亚群的某一个基因的表达分布情况。我的marker基因一共选了12个,下面来画图:

Seurat内置的VlnPlot函数可以直接画,

library(xlsx)
markerdf2=read.xlsx("ref_marker2.xlsx",sheetIndex = 1)
markerdf2$gene=as.character(markerdf2$gene) mye.seu=readRDS("mye.seu.rds")
mye.seu$celltype=factor(mye.seu$celltype,levels = sort(unique(mye.seu$celltype)))
Idents(mye.seu)="celltype" VlnPlot(mye.seu, features = markerdf2$gene, pt.size = 0, ncol = 1)+
scale_x_discrete("")+
theme(
axis.text.x.bottom = element_blank()
)
ggsave("vln1.pdf",width = 20,height = 80,units = "cm")

其中pt.size参数表示点的大小,一个点就是一个细胞,一般可以直接设置为0,即不显示点,只画小提琴,看上去更加清楚。尽管此处我对标度和主题进行了调整,但我发现这只对单个feature有用,多个feature时就不起作用了,后续就用AI来简单编辑一下吧。

需要注意的是,图的颜色是根据亚群的类别来划分的,并不是根据基因来区分。

第二种方法,ggplot2代码如下

library(reshape2)
vln.df=as.data.frame(mye.seu[["RNA"]]@data[markerdf2$gene,])
vln.df$gene=rownames(vln.df)
vln.df=melt(vln.df,id="gene")
colnames(vln.df)[c(2,3)]=c("CB","exp") #数据格式如下
# > head(vln.df)
# gene CB exp
# 1 CLEC9A N01_AAACGGGCATTTCAGG_1 0.000
# 2 RGCC N01_AAACGGGCATTTCAGG_1 0.000
# 3 FCER1A N01_AAACGGGCATTTCAGG_1 0.000
# 4 CD1A N01_AAACGGGCATTTCAGG_1 0.000
# 5 FSCN1 N01_AAACGGGCATTTCAGG_1 1.104
# 6 CCR7 N01_AAACGGGCATTTCAGG_1 0.000 anno=mye.seu@meta.data[,c("CB","celltype")]
vln.df=inner_join(vln.df,anno,by="CB")
vln.df$gene=factor(vln.df$gene,levels = markerdf2$gene) #为了控制画图的基因顺序 vln.df%>%ggplot(aes(celltype,exp))+geom_violin(aes(fill=gene),scale = "width")+
facet_grid(vln.df$gene~.,scales = "free_y")+
scale_fill_brewer(palette = "Set3",direction = 1)+
scale_x_discrete("")+scale_y_continuous("")+
theme_bw()+
theme(
axis.text.x.bottom = element_text(angle = 45,hjust = 1,vjust = 1),
panel.grid.major = element_blank(),panel.grid.minor = element_blank(),
legend.position = "none"
)
ggsave("vln2.pdf",width = 11,height = 22,units = "cm")

geom_violin()函数的scale参数为"width"时,所有小提琴有相同的宽度,默认是"area",有相同的面积;facet_grid()用来分面,文中用的是多行一列,scales = "free_y"表示不同行之间可以有不同范围的y值;scale_fill_brewer()使用ColorBrewer调色板。

这个图的颜色根据基因来区分,有时可能还会看到小提琴图的颜色是用亚群某个基因的表达均值来映射的,比如

vln.df$celltype_gene=paste(vln.df$celltype,vln.df$gene,sep = "_")
stat.df=as.data.frame(vln.df%>%group_by(celltype,gene)%>%summarize(mean=mean(exp)))
stat.df$celltype_gene=paste(stat.df$celltype,stat.df$gene,sep = "_")
stat.df=stat.df[,c("mean","celltype_gene")]
vln.df=inner_join(vln.df,stat.df,by="celltype_gene")
vln.df$mean=ifelse(vln.df$mean > 3, 3, vln.df$mean)
#这里的阈值3要提前综合所有基因看一下
vln.df%>%ggplot(aes(celltype,exp))+geom_violin(aes(fill=mean),scale = "width")+
facet_grid(vln.df$gene~.,scales = "free_y")+
scale_fill_gradient(limits=c(0,3),low = "lightgrey",high = "yellow")+
scale_x_discrete("")+scale_y_continuous("",expand = c(0.02,0))+
theme_bw()+
theme(
panel.grid.major = element_blank(),panel.grid.minor = element_blank(),
axis.text.x.bottom = element_text(angle = 45,hjust = 1,vjust = 1)
)
ggsave("vln3.pdf",width = 11,height = 22,units = "cm")

4. 气泡图展示marker基因

Seurat的画法是这样的,

DotPlot(mye.seu, features = markerdf2$gene)+RotatedAxis()+
scale_x_discrete("")+scale_y_discrete("")
#其余的微调同ggplot2

第二种方法,ggplot2代码如下

bubble.df=as.matrix(mye.seu[["RNA"]]@data[markerdf2$gene,])
bubble.df=t(bubble.df)
bubble.df=as.data.frame(scale(bubble.df))
bubble.df$CB=rownames(bubble.df)
bubble.df=merge(bubble.df,mye.seu@meta.data[,c("CB","celltype")],by = "CB")
bubble.df$CB=NULL celltype_v=c()
gene_v=c()
mean_v=c()
ratio_v=c()
for (i in unique(bubble.df$celltype)) {
bubble.df_small=bubble.df%>%filter(celltype==i)
for (j in markerdf2$gene) {
exp_mean=mean(bubble.df_small[,j])
exp_ratio=sum(bubble.df_small[,j] > min(bubble.df_small[,j])) / length(bubble.df_small[,j])
celltype_v=append(celltype_v,i)
gene_v=append(gene_v,j)
mean_v=append(mean_v,exp_mean)
ratio_v=append(ratio_v,exp_ratio)
}
} plotdf=data.frame(
celltype=celltype_v,
gene=gene_v,
exp=mean_v,
ratio=ratio_v
)
plotdf$celltype=factor(plotdf$celltype,levels = sort(unique(plotdf$celltype)))
plotdf$gene=factor(plotdf$gene,levels = rev(as.character(markerdf2$gene)))
plotdf$exp=ifelse(plotdf$exp>3,3,plotdf$exp)
plotdf%>%ggplot(aes(x=celltype,y=gene,size=ratio,color=exp))+geom_point()+
scale_x_discrete("")+scale_y_discrete("")+
scale_color_gradientn(colours = rev(c("#FFD92F","#FEE391",brewer.pal(11, "Spectral")[7:11])))+
scale_size_continuous(limits = c(0,1))+theme_bw()+
theme(
axis.text.x.bottom = element_text(hjust = 1, vjust = 1, angle = 45)
)
ggsave(filename = "bubble2.pdf",width = 9,height = 12,units = c("cm"))

这两种方法具体函数定义略有差异,所以气泡图看上去不太一样


到这里,marker基因的可视化就结束了,基本就是这些。如果你觉得上述内容对你有用,欢迎转发,点赞!有任何疑问可以在公众号后台提出,我都会回复的。

因水平有限,有错误的地方,欢迎批评指正!

单细胞分析实录(9): 展示marker基因的4种图形(二)的更多相关文章

  1. 单细胞分析实录(8): 展示marker基因的4种图形(一)

    今天的内容讲讲单细胞文章中经常出现的展示细胞marker的图:tsne/umap图.热图.堆叠小提琴图.气泡图,每个图我都会用两种方法绘制. 使用的数据来自文献:Single-cell transcr ...

  2. 【代码更新】单细胞分析实录(20): 将多个样本的CNV定位到染色体臂,并画热图

    之前写过三篇和CNV相关的帖子,如果你做肿瘤单细胞转录组,大概率看过: 单细胞分析实录(11): inferCNV的基本用法 单细胞分析实录(12): 如何推断肿瘤细胞 单细胞分析实录(13): in ...

  3. 【代码更新】单细胞分析实录(21): 非负矩阵分解(NMF)的R代码实现,只需两步,啥图都有

    1. 起因 之前的代码(单细胞分析实录(17): 非负矩阵分解(NMF)代码演示)没有涉及到python语法,只有4个python命令行,就跟Linux下面的ls grep一样的.然鹅,有几个小伙伴不 ...

  4. 单细胞分析实录(5): Seurat标准流程

    前面我们已经学习了单细胞转录组分析的:使用Cell Ranger得到表达矩阵和doublet检测,今天我们开始Seurat标准流程的学习.这一部分的内容,网上有很多帖子,基本上都是把Seurat官网P ...

  5. 单细胞分析实录(4): doublet检测

    最近Cell Systems杂志发表了一篇针对现有几种检测单细胞测序doublet的工具的评估文章,系统比较了常见的例如Scrublet.DoubletFinder等工具在检测准确性.计算效率等方面的 ...

  6. 单细胞分析实录(3): Cell Hashing数据拆分

    在之前的文章里,我主要讲了如下两个内容:(1) 认识Cell Hashing:(2): 使用Cell Ranger得到表达矩阵.相信大家已经知道了cell hashing与普通10X转录组的差异,以及 ...

  7. 单细胞分析实录(18): 基于CellPhoneDB的细胞通讯分析及可视化 (上篇)

    细胞通讯分析可以给我们一些细胞类群之间相互调控/交流的信息,这种细胞之间的调控主要是通过受配体结合,传递信号来实现的.不同的分化.疾病过程,可能存在特异的细胞通讯关系,因此阐明这些通讯关系至关重要. ...

  8. 单细胞分析实录(19): 基于CellPhoneDB的细胞通讯分析及可视化 (下篇)

    在上一篇帖子中,我介绍了CellPhoneDB的原理.实际操作,以及一些值得注意的地方.这一篇继续细胞通讯分析的可视化. 公众号后台回复20210723获取本次演示的测试数据,以及主要的可视化代码. ...

  9. 单细胞分析实录(2): 使用Cell Ranger得到表达矩阵

    Cell Ranger是一个"傻瓜"软件,你只需提供原始的fastq文件,它就会返回feature-barcode表达矩阵.为啥不说是gene-cell,举个例子,cell has ...

随机推荐

  1. Educational Codeforces Round 97 (Rated for Div. 2)【ABCD】

    比赛链接:https://codeforces.com/contest/1437 A. Marketing Scheme 题解 令 \(l = \frac{a}{2}\),那么如果 \(r < ...

  2. Educational Codeforces Round 91 (Rated for Div. 2) A. Three Indices

    题目链接:https://codeforces.com/contest/1380/problem/A 题意 给出一个大小为 $n$ 的排列,找出是否有三个元素满足 $p_i < p_j\ and ...

  3. poj3585 Accumulation Degree(树形dp,换根)

    题意: 给你一棵n个顶点的树,有n-1条边,每一条边有一个容量z,表示x点到y点最多能通过z容量的水. 你可以任意选择一个点,然后从这个点倒水,然后水会经过一些边流到叶节点从而流出.问你最多你能倒多少 ...

  4. PowerShell随笔1---背景

    既然是随笔,那就想到什么说什么,既会分享主题知识,也会分享一些其他技巧和个人学习方法,供交流. 我一般学习一个东西,我都会问几个问题: 这东西是什么? 这东西有什么用,为什么会出现,出现是为了解决什么 ...

  5. Python3.7.9+Locust1.4.3版本性能测试工具案例分享

    一.Locust工具介绍 1.概述 Locust是一款易于使用的分布式负载测试工具,完全基于事件,使用python开发,即一个locust节点也可以在一个进程中支持数千并发用户,不使用回调,通过gev ...

  6. markdown 公式编写及不同平台公式转换

    1.markdown 用法及公式编写,这块就不再重复,已有很多官方平台的文档说明很完善 有道云markdown写作文档 在博客园中插入公式 markdown公式输入(特殊符号) markdown 特殊 ...

  7. μC/OS-III---I笔记4---软件定时器

    软件定时器是在硬件定时器的基础上开发的,通过将一个硬件定时器进行分频及管理就可以的到多个软件定时器.他和时间管理共同组成了系统的时间管理大部分的内容.系统一开始的系统初始化函数OSInit函数内调用了 ...

  8. Python求二维数组中某列的最大值

    主要运用np.amax() import numpy as np help(np.amax) a = np.arange(9).reshape((3, 3)) max_all = np.amax(a) ...

  9. 高阶类 & HOC & anonymous class extends

    高阶类 & HOC & anonymous class extends js 匿名 class extends / mix-ins / 多继承 高阶函数 HOF, 接收一个 funct ...

  10. window.URL.createObjectURL

    window.URL.createObjectURL https://html5.xgqfrms.xyz/Canvas/safety-canvas.html var video = document. ...