在上一篇中,我已经讲解了展示marker基因的前两种图形,分别是tsne/umap图、热图,感兴趣的读者可以回顾一下。这一节我们继续学习堆叠小提琴图和气泡图。

3. 堆叠小提琴图展示marker基因

相比于其他可视化形式,小提琴图可以更直观地展示某一类亚群的某一个基因的表达分布情况。我的marker基因一共选了12个,下面来画图:

Seurat内置的VlnPlot函数可以直接画,

library(xlsx)
markerdf2=read.xlsx("ref_marker2.xlsx",sheetIndex = 1)
markerdf2$gene=as.character(markerdf2$gene) mye.seu=readRDS("mye.seu.rds")
mye.seu$celltype=factor(mye.seu$celltype,levels = sort(unique(mye.seu$celltype)))
Idents(mye.seu)="celltype" VlnPlot(mye.seu, features = markerdf2$gene, pt.size = 0, ncol = 1)+
scale_x_discrete("")+
theme(
axis.text.x.bottom = element_blank()
)
ggsave("vln1.pdf",width = 20,height = 80,units = "cm")

其中pt.size参数表示点的大小,一个点就是一个细胞,一般可以直接设置为0,即不显示点,只画小提琴,看上去更加清楚。尽管此处我对标度和主题进行了调整,但我发现这只对单个feature有用,多个feature时就不起作用了,后续就用AI来简单编辑一下吧。

需要注意的是,图的颜色是根据亚群的类别来划分的,并不是根据基因来区分。

第二种方法,ggplot2代码如下

library(reshape2)
vln.df=as.data.frame(mye.seu[["RNA"]]@data[markerdf2$gene,])
vln.df$gene=rownames(vln.df)
vln.df=melt(vln.df,id="gene")
colnames(vln.df)[c(2,3)]=c("CB","exp") #数据格式如下
# > head(vln.df)
# gene CB exp
# 1 CLEC9A N01_AAACGGGCATTTCAGG_1 0.000
# 2 RGCC N01_AAACGGGCATTTCAGG_1 0.000
# 3 FCER1A N01_AAACGGGCATTTCAGG_1 0.000
# 4 CD1A N01_AAACGGGCATTTCAGG_1 0.000
# 5 FSCN1 N01_AAACGGGCATTTCAGG_1 1.104
# 6 CCR7 N01_AAACGGGCATTTCAGG_1 0.000 anno=mye.seu@meta.data[,c("CB","celltype")]
vln.df=inner_join(vln.df,anno,by="CB")
vln.df$gene=factor(vln.df$gene,levels = markerdf2$gene) #为了控制画图的基因顺序 vln.df%>%ggplot(aes(celltype,exp))+geom_violin(aes(fill=gene),scale = "width")+
facet_grid(vln.df$gene~.,scales = "free_y")+
scale_fill_brewer(palette = "Set3",direction = 1)+
scale_x_discrete("")+scale_y_continuous("")+
theme_bw()+
theme(
axis.text.x.bottom = element_text(angle = 45,hjust = 1,vjust = 1),
panel.grid.major = element_blank(),panel.grid.minor = element_blank(),
legend.position = "none"
)
ggsave("vln2.pdf",width = 11,height = 22,units = "cm")

geom_violin()函数的scale参数为"width"时,所有小提琴有相同的宽度,默认是"area",有相同的面积;facet_grid()用来分面,文中用的是多行一列,scales = "free_y"表示不同行之间可以有不同范围的y值;scale_fill_brewer()使用ColorBrewer调色板。

这个图的颜色根据基因来区分,有时可能还会看到小提琴图的颜色是用亚群某个基因的表达均值来映射的,比如

vln.df$celltype_gene=paste(vln.df$celltype,vln.df$gene,sep = "_")
stat.df=as.data.frame(vln.df%>%group_by(celltype,gene)%>%summarize(mean=mean(exp)))
stat.df$celltype_gene=paste(stat.df$celltype,stat.df$gene,sep = "_")
stat.df=stat.df[,c("mean","celltype_gene")]
vln.df=inner_join(vln.df,stat.df,by="celltype_gene")
vln.df$mean=ifelse(vln.df$mean > 3, 3, vln.df$mean)
#这里的阈值3要提前综合所有基因看一下
vln.df%>%ggplot(aes(celltype,exp))+geom_violin(aes(fill=mean),scale = "width")+
facet_grid(vln.df$gene~.,scales = "free_y")+
scale_fill_gradient(limits=c(0,3),low = "lightgrey",high = "yellow")+
scale_x_discrete("")+scale_y_continuous("",expand = c(0.02,0))+
theme_bw()+
theme(
panel.grid.major = element_blank(),panel.grid.minor = element_blank(),
axis.text.x.bottom = element_text(angle = 45,hjust = 1,vjust = 1)
)
ggsave("vln3.pdf",width = 11,height = 22,units = "cm")

4. 气泡图展示marker基因

Seurat的画法是这样的,

DotPlot(mye.seu, features = markerdf2$gene)+RotatedAxis()+
scale_x_discrete("")+scale_y_discrete("")
#其余的微调同ggplot2

第二种方法,ggplot2代码如下

bubble.df=as.matrix(mye.seu[["RNA"]]@data[markerdf2$gene,])
bubble.df=t(bubble.df)
bubble.df=as.data.frame(scale(bubble.df))
bubble.df$CB=rownames(bubble.df)
bubble.df=merge(bubble.df,mye.seu@meta.data[,c("CB","celltype")],by = "CB")
bubble.df$CB=NULL celltype_v=c()
gene_v=c()
mean_v=c()
ratio_v=c()
for (i in unique(bubble.df$celltype)) {
bubble.df_small=bubble.df%>%filter(celltype==i)
for (j in markerdf2$gene) {
exp_mean=mean(bubble.df_small[,j])
exp_ratio=sum(bubble.df_small[,j] > min(bubble.df_small[,j])) / length(bubble.df_small[,j])
celltype_v=append(celltype_v,i)
gene_v=append(gene_v,j)
mean_v=append(mean_v,exp_mean)
ratio_v=append(ratio_v,exp_ratio)
}
} plotdf=data.frame(
celltype=celltype_v,
gene=gene_v,
exp=mean_v,
ratio=ratio_v
)
plotdf$celltype=factor(plotdf$celltype,levels = sort(unique(plotdf$celltype)))
plotdf$gene=factor(plotdf$gene,levels = rev(as.character(markerdf2$gene)))
plotdf$exp=ifelse(plotdf$exp>3,3,plotdf$exp)
plotdf%>%ggplot(aes(x=celltype,y=gene,size=ratio,color=exp))+geom_point()+
scale_x_discrete("")+scale_y_discrete("")+
scale_color_gradientn(colours = rev(c("#FFD92F","#FEE391",brewer.pal(11, "Spectral")[7:11])))+
scale_size_continuous(limits = c(0,1))+theme_bw()+
theme(
axis.text.x.bottom = element_text(hjust = 1, vjust = 1, angle = 45)
)
ggsave(filename = "bubble2.pdf",width = 9,height = 12,units = c("cm"))

这两种方法具体函数定义略有差异,所以气泡图看上去不太一样


到这里,marker基因的可视化就结束了,基本就是这些。如果你觉得上述内容对你有用,欢迎转发,点赞!有任何疑问可以在公众号后台提出,我都会回复的。

因水平有限,有错误的地方,欢迎批评指正!

单细胞分析实录(9): 展示marker基因的4种图形(二)的更多相关文章

  1. 单细胞分析实录(8): 展示marker基因的4种图形(一)

    今天的内容讲讲单细胞文章中经常出现的展示细胞marker的图:tsne/umap图.热图.堆叠小提琴图.气泡图,每个图我都会用两种方法绘制. 使用的数据来自文献:Single-cell transcr ...

  2. 【代码更新】单细胞分析实录(20): 将多个样本的CNV定位到染色体臂,并画热图

    之前写过三篇和CNV相关的帖子,如果你做肿瘤单细胞转录组,大概率看过: 单细胞分析实录(11): inferCNV的基本用法 单细胞分析实录(12): 如何推断肿瘤细胞 单细胞分析实录(13): in ...

  3. 【代码更新】单细胞分析实录(21): 非负矩阵分解(NMF)的R代码实现,只需两步,啥图都有

    1. 起因 之前的代码(单细胞分析实录(17): 非负矩阵分解(NMF)代码演示)没有涉及到python语法,只有4个python命令行,就跟Linux下面的ls grep一样的.然鹅,有几个小伙伴不 ...

  4. 单细胞分析实录(5): Seurat标准流程

    前面我们已经学习了单细胞转录组分析的:使用Cell Ranger得到表达矩阵和doublet检测,今天我们开始Seurat标准流程的学习.这一部分的内容,网上有很多帖子,基本上都是把Seurat官网P ...

  5. 单细胞分析实录(4): doublet检测

    最近Cell Systems杂志发表了一篇针对现有几种检测单细胞测序doublet的工具的评估文章,系统比较了常见的例如Scrublet.DoubletFinder等工具在检测准确性.计算效率等方面的 ...

  6. 单细胞分析实录(3): Cell Hashing数据拆分

    在之前的文章里,我主要讲了如下两个内容:(1) 认识Cell Hashing:(2): 使用Cell Ranger得到表达矩阵.相信大家已经知道了cell hashing与普通10X转录组的差异,以及 ...

  7. 单细胞分析实录(18): 基于CellPhoneDB的细胞通讯分析及可视化 (上篇)

    细胞通讯分析可以给我们一些细胞类群之间相互调控/交流的信息,这种细胞之间的调控主要是通过受配体结合,传递信号来实现的.不同的分化.疾病过程,可能存在特异的细胞通讯关系,因此阐明这些通讯关系至关重要. ...

  8. 单细胞分析实录(19): 基于CellPhoneDB的细胞通讯分析及可视化 (下篇)

    在上一篇帖子中,我介绍了CellPhoneDB的原理.实际操作,以及一些值得注意的地方.这一篇继续细胞通讯分析的可视化. 公众号后台回复20210723获取本次演示的测试数据,以及主要的可视化代码. ...

  9. 单细胞分析实录(2): 使用Cell Ranger得到表达矩阵

    Cell Ranger是一个"傻瓜"软件,你只需提供原始的fastq文件,它就会返回feature-barcode表达矩阵.为啥不说是gene-cell,举个例子,cell has ...

随机推荐

  1. 2019牛客暑期多校训练营(第九场)E.All men are brothers(并查集+排列组合)

    题意:现在有n个集合 每个集合大小为1 现在你可以把集合合并m次 每次会告诉你哪个集合合并 让你输出每次从不同的四个集合里各选出四个的组合方案 思路:我们可以想到用并查集模拟集合的合并 对于方案数 我 ...

  2. HDU5691 Sitting in Line【状压DP】

    HDU5691 Sitting in Line 题意: 给出\(n\)个数字,有些数字的位置固定了,现在要求把所有没固定的数字放在一个位置,使得任意相邻两个位置的数字的相乘的和最大 题解: \(n\) ...

  3. uva10859 Placing Lampposts (树形dp+求两者最小值方法)

    题目链接:点击打开链接 题意:给你一个n个点m条边的无向无环图,在尽量少的节点上放灯,使得所有边都被照亮,每盏灯将照亮以它为一个端点的所有边.在灯的总数最小的前提下,被两盏灯同时照亮的边数应尽量大. ...

  4. Codeforces Round #646 (Div. 2) C、Game On Leaves

    题目链接:C.Game On Leaves 题意: 给你一个n个节点的无根树,你每次可以删除一个叶节点.如果谁先删除x号节点谁就赢了.两个人轮流操作 题解: 如果x号节点本身就是一个叶节点,那么谁先走 ...

  5. Educational Codeforces Round 89 (Rated for Div. 2) A Shovels and Swords B、Shuffle

    题目链接:A.Shovels and Swords 题意: 你需要一个木棍和两个钻石可以造出来一把剑 你需要两个木棍和一个钻石可以造出来一把铁锹 你现在有a个木棍,b个钻石,问你最多可以造出来几件东西 ...

  6. 洛谷P1462-通往奥格瑞玛的道路-二分+最短路

    洛谷P1462-通往奥格瑞玛的道路 题目描述 在艾泽拉斯,有\(n\)个城市.编号为\(1,2,3,...,n\). 城市之间有\(m\)条双向的公路,连接着两个城市,从某个城市到另一个城市,会遭到联 ...

  7. 在Blazor Server 项目中使用 EF Core Sqlite

    按照教程创建了一个 Blazor Server 项目 教程地址: https://docs.microsoft.com/zh-cn/aspnet/core/tutorials/build-a-blaz ...

  8. Qt开发Activex笔记(一):环境搭建、基础开发流程和演示Demo

    前言   使用C#开发动画,绘图性能跟不上,更换方案使用Qt开发Qt的控件制作成OCX以供C#调用,而activex则是ocx的更高级形式.  QtCreator是没有Active控件项目的,所有需要 ...

  9. woj1012 Thingk and Count DP好题

    title: woj1012 Thingk and Count DP好题 date: 2020-03-12 categories: acm tags: [acm,dp,woj] 难题,dp好题,几何题 ...

  10. Google Chrome All In One

    Google Chrome All In One Chrome Experiments Chrome 测试版 Chrome 开发者版 Chrome Canary 版 chrome://welcome/ ...