题目描述

国际象棋是世界上最古老的博弈游戏之一,和中国的围棋、象棋以及日本的将棋同享盛名。据说国际象棋起源于易经的思想,棋盘是一个 \(8 \times 8\) 大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳。

而我们的主人公小Q,正是国际象棋的狂热爱好者。作为一个顶尖高手,他已不满足于普通的棋盘与规则,于是他跟他的好朋友小W决定将棋盘扩大以适应他们的新规则。

小Q找到了一张由 \(N \times M\) 个正方形的格子组成的矩形纸片,每个格子被涂有黑白两种颜色之一。小Q想在这种纸中裁减一部分作为新棋盘,当然,他希望这个棋盘尽可能的大。

不过小Q还没有决定是找一个正方形的棋盘还是一个矩形的棋盘(当然,不管哪种,棋盘必须都黑白相间,即相邻的格子不同色),所以他希望可以找到最大的正方形棋盘面积和最大的矩形棋盘面积,从而决定哪个更好一些。

于是小Q找到了即将参加全国信息学竞赛的你,你能帮助他么?

思路

本题用到的是悬线法

悬线法的用途:解决给定矩阵中满足条件的最大子矩阵

需要用到这几个东西

left[i][j]:代表从 (i,j) 能到达的最左位置

right[i][j]:代表从 (i,j) 能到达的最右位置

up[i][j]:代表从 (i,j) 向上扩展最长长度.

然后这样递推

left[i][j] = max(left[i][j],left[i-1][j])

right[i][j] = min(right[i][j],right[i-1][j])

代码

/************************************************
*Author : lrj124
*Created Time : 2019.08.26.08:17
*Mail : 1584634848@qq.com
*Problem : luogu1169
************************************************/
#include <algorithm>
#include <cstdio>
using std :: max;
using std :: min;
const int maxn = 2000 + 10;
int n,m,a[maxn][maxn],left[maxn][maxn],right[maxn][maxn],up[maxn][maxn],ans_sq,ans;
int main() {
scanf("%d%d",&n,&m);
for (int i = 1;i <= n;i++)
for (int j = 1;j <= m;j++) {
scanf("%d",&a[i][j]);
up[i][j] = 1;
left[i][j] = right[i][j] = j;
}
for (int i = 1;i <= n;i++)
for (int j = 2;j <= m;j++)
if (a[i][j] ^ a[i][j-1]) left[i][j] = left[i][j-1];
for (int i = 1;i <= n;i++)
for (int j = m-1;j;j--)
if (a[i][j] ^ a[i][j+1]) right[i][j] = right[i][j+1];
for (int i = 1;i <= n;i++)
for (int j = 1,tmp;j <= m;j++) {
if (i > 1 && a[i][j]^a[i-1][j]) {
up[i][j] = up[i-1][j]+1;
left[i][j] = max(left[i][j],left[i-1][j]);
right[i][j] = min(right[i][j],right[i-1][j]);
}
tmp = right[i][j]-left[i][j]+1;
ans = max(ans,tmp*up[i][j]);
ans_sq = max(ans_sq,min(up[i][j],tmp)*min(up[i][j],tmp));
}
printf("%d\n%d",ans_sq,ans);
return 0;
}

【ZJOI2007】棋盘制作 - 悬线法的更多相关文章

  1. P1169 [ZJOI2007]棋盘制作 && 悬线法

    P1169 [ZJOI2007]棋盘制作 给出一个 \(N * M\) 的 \(01\) 矩阵, 求最大的正方形和最大的矩形交错子矩阵 \(n , m \leq 2000\) 悬线法 悬线法可以求出给 ...

  2. BZOJ 1057: [ZJOI2007]棋盘制作 悬线法求最大子矩阵+dp

    1057: [ZJOI2007]棋盘制作 Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑 ...

  3. 洛谷P1169 [ZJOI2007]棋盘制作 悬线法 动态规划

    P1169 [ZJOI2007]棋盘制作 (逼着自己做DP 题意: 给定一个包含0,1的矩阵,求出一个面积最大的正方形矩阵和长方形矩阵,要求矩阵中相邻两个的值不同. 思路: 悬线法. 用途: 解决给定 ...

  4. P1169 [ZJOI2007]棋盘制作[悬线法/二维dp]

    题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8 \times 88×8大小的黑白相间的方阵,对应八八六十四卦,黑白 ...

  5. P1169 [ZJOI2007]棋盘制作——悬线法

    ---恢复内容开始--- 给你一个矩阵,选出最大的棋盘,棋盘的要求是黑白相间(01不能相邻),求出最大的正方形和矩形棋盘的面积: 数据n,m<=2000; 这个一看就可能是n2DP,但是写不出. ...

  6. [ZJOI2007]棋盘制作 悬线法dp 求限制下的最大子矩阵

    https://www.luogu.org/problemnew/show/P1169 第一次听说到这种dp的名称叫做悬线法,听起来好厉害 题意是求一个矩阵内的最大01交错子矩阵,开始想的是dp[20 ...

  7. P1169 [ZJOI2007]棋盘制作 悬线法or单调栈

    思路:悬线法\(or\)单调栈 提交:2次 错因:正方形面积取错了\(QwQ\) 题解: 悬线法 讲解:王知昆\(dalao\)的\(PPT\) 详见代码: #include<cstdio> ...

  8. 【BZOJ-3039&1057】玉蟾宫&棋盘制作 悬线法

    3039: 玉蟾宫 Time Limit: 2 Sec  Memory Limit: 128 MBSubmit: 753  Solved: 444[Submit][Status][Discuss] D ...

  9. [P1169] 棋盘制作 &悬线法学习笔记

    学习笔记 悬线法 最大子矩阵问题: 在一个给定的矩形中有一些障碍点,找出内部不包含障碍点的,边与整个矩形平行或重合的最大子矩形. 极大子矩型:无法再向外拓展的有效子矩形 最大子矩型:最大的一个有效子矩 ...

随机推荐

  1. [翻译]ASP.NET Core在 .NET 5 Preview 7的更新

    .NET 5 Preview 7现在可以用了,可以进行评估了.这是此版本中的新增功能: Blazor WebAssembly应用程序现在针对.NET 5 更新了Blazor WebAssembly的调 ...

  2. Spring Cloud Alibaba教程:Nacos

    Nacos是什么 Nacos 致力于帮助您发现.配置和管理微服务,它 提供了一组简单易用的特性集,帮助您快速实现动态服务发现.服务配置.服务元数据及流量管理. 注册中心 nacos-server 可以 ...

  3. 性能测试 -- docker安装influxdb

    一.前提 1.项目已经部署好 2.docker已经安装好 二.docker安装influxdb 1.下载influxdb镜像:docker pull tutum/influxdb    1)超时报错: ...

  4. .NetCore 登录(密码盐+随机数)

    一.理论部分 1.为什么要给密码加盐 我们在数据库中存入的密码一般不会是明文,都要通加MD5加密后存入,但是有些简单的密码加密后存入数据库也不安全,所有我们采用密码+盐再进行MD5加密存入数据库中. ...

  5. Ansible基础

    Ansible基于Python paramiko 开发,分布式,无需客户端,轻量级,配置语法使用YMAL 及Jinja2模板语言. 组件: 核心:ansible 核心模块(Core Modules): ...

  6. IO流——字节流、字符流

    在程序中所有的数据都是以流的方式进行传输或保存的,程序需要数据的时候要使用输入流读取数据,而当程序需要将一些数据保存起来的时候,就要使用输出流完成. 流的分类 ①   流按其流向分为“输入流”和“输出 ...

  7. myBatis源码解析-日志篇(1)

    上半年在进行知识储备,下半年争取写一点好的博客来记录自己源码之路.在学习源码的路上也掌握了一些设计模式,可所谓一举两得.本次打算写Mybatis的源码解读. 准备工作 1. 下载mybatis源码 下 ...

  8. Fortify Audit Workbench 笔记 Race Condition: Singleton Member Field 竞争条件:单例的成员字段

    Race Condition: Singleton Member Field 竞争条件:单例的成员字段 Abstract Servlet 成员字段可能允许一个用户查看其他用户的数据. Explanat ...

  9. PHP 表单和用户输入讲解

    PHP 表单和用户输入 PHP 中的 $_GET 和 $_POST 变量用于检索表单中的信息,比如用户输入. PHP 表单处理 有一点很重要的事情值得注意,当处理 HTML 表单时,PHP 能把来自 ...

  10. Python os.rmdir() 方法

    概述 os.rmdir() 方法用于删除指定路径的目录.仅当这文件夹是空的才可以, 否则, 抛出OSError.高佣联盟 www.cgewang.com 语法 rmdir()方法语法格式如下: os. ...