CNN中的池化层的理解和实例
池化操作是利用一个矩阵窗口在输入张量上进行扫描,并且每个窗口中的值通过取最大、取平均或其它的一些操作来减少元素个数。池化窗口由ksize来指定,根据strides的长度来决定移动步长。如果strides都是1,每个矩阵窗口都将被使用,如果strides的值都是2,那么每一维度上的窗口每隔1个被使用。
举例:
tf.nn.avg_pool(value, ksize, strides, padding, name=None)
功能:计算池化区域中元素的平均值
输入参数:
value:一个四维的Tensor,维度分别表示[batch, height, width, channels]
ksize:长度不小于4的整形数组,每一维度对应于输入数据张量中每一维的窗口对应值
strides:长度不小于4的整型数组,表示滑动窗口在输入数据张量每一维度上的步长
padding:字符串,取值为SAME或者VALID
输出:一个Tensor,输出维度和value相同
输出数据的维度计算方法:shape(output) = (shape(value) - ksize + 1) / strides
取舍方向取决于:padding的值
padding = 'SAME':向下取舍,输入和输出维度相同
padding = 'VALID':向上取舍,输入输出维度不同
input_data = tf.Variable(np.random.rand(10, 6, 6, 3), dtype= np.float32)
filter_data = tf.Variable(np.random.rand(2, 2, 3, 1), dtype= np.float32)
y = tf.nn.conv2d(input_data, filter_data, strides =[1,1,1,1], padding='SAME')
output = tf.nn.avg_pool(value=y, ksize=[1,2,2 ,1], strides=[1,2,2,1], padding='SAME')
with tf.Session() as sess:
init = tf.initialize_all_variables()
sess.run(init)
a = sess.run(y)
b = sess.run(output)
print (a)
print (b)
其中,a的维度:(10,6,6,1),b的维度:(10,3,3,1),b的维度计算方法:由于池化时ksize是2×2,原来张量为6×6,移动步长为2,
所以最后池化后的张量为(6-2+1)/2=2.5,此时公式不适用。我自己的算法:1+(6-2)/2 = 3
CNN中的池化层的理解和实例的更多相关文章
- 【深度学习篇】--神经网络中的池化层和CNN架构模型
一.前述 本文讲述池化层和经典神经网络中的架构模型. 二.池化Pooling 1.目标 降采样subsample,shrink(浓缩),减少计算负荷,减少内存使用,参数数量减少(也可防止过拟合)减少输 ...
- 神经网络中的池化层(pooling)
在卷积神经网络中,我们经常会碰到池化操作,而池化层往往在卷积层后面,通过池化来降低卷积层输出的特征向量,同时改善结果(不易出现过拟合).为什么可以通过降低维度呢? 因为图像具有一种“静态性”的属性,这 ...
- TensorFlow 池化层
在 TensorFlow 中使用池化层 在下面的练习中,你需要设定池化层的大小,strides,以及相应的 padding.你可以参考 tf.nn.max_pool().Padding 与卷积 pad ...
- [PyTorch 学习笔记] 3.3 池化层、线性层和激活函数层
本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson3/nn_layers_others.py 这篇文章主要介绍 ...
- CNN中卷积层 池化层反向传播
参考:https://blog.csdn.net/kyang624823/article/details/78633897 卷积层 池化层反向传播: 1,CNN的前向传播 a)对于卷积层,卷积核与输入 ...
- tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图
tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图 因为很多 demo 都比较复杂,专门抽出这两个函数,写的 demo. 更多教程:http://www.tensorflown ...
- tensorflow中的卷积和池化层(一)
在官方tutorial的帮助下,我们已经使用了最简单的CNN用于Mnist的问题,而其实在这个过程中,主要的问题在于如何设置CNN网络,这和Caffe等框架的原理是一样的,但是tf的设置似乎更加简洁. ...
- CNN学习笔记:池化层
CNN学习笔记:池化层 池化 池化(Pooling)是卷积神经网络中另一个重要的概念,它实际上是一种形式的降采样.有多种不同形式的非线性池化函数,而其中“最大池化(Max pooling)”是最为常见 ...
- ubuntu之路——day17.3 简单的CNN和CNN的常用结构池化层
来看上图的简单CNN: 从39x39x3的原始图像 不填充且步长为1的情况下经过3x3的10个filter卷积后 得到了 37x37x10的数据 不填充且步长为2的情况下经过5x5的20个filter ...
随机推荐
- SpringMVC由浅入深day01_9商品修改功能开发
9 商品修改功能开发 9.1 需求 操作流程: 1.进入商品查询列表页面 2.点击修改,进入商品修改页面,页面中显示了要修改的商品(从数据库查询) 要修改的商品从数据库查询,根据商品id(主键)查询商 ...
- 让树莓派自动上报IP地址到邮箱,二代B
由于我使用树莓派的场景大多数是在没有显示器.只用terminal连接它的情况下,所以,它的IP地址有时会在重启之后变掉(DHCP的),导致我无法通过terminal连接上它.然后我又要很麻烦地登录路由 ...
- C mysql (C API Commands out of sync; you can't run this command now)
错误出现在当一个用户使用查询,另一个用户再使用此sql连接进行查询的时候: 原因是因为上一次使用此sql连接进行查询时没有将所有的结果集给释放掉,在所有使用此sql连接进行查询的地方将所有的结果集给释 ...
- 关于C中函数传参的一点理解
一般来说c传值分为传值与传指针,Java里没有指针,因此只有传值,但是Java里传值分为简单变量传值和引用型变量传值,从本质上来说这两者没啥区别. 下面主要说的是传参时对原变量的影响: 最初练习创建单 ...
- 使用dshow捕获摄像头图像
#include "stdafx.h" #include <DShow.h> #include <Guiddef.h> #include <strmi ...
- fastcgi模式下设置php最大执行时间
php在执行中常见错误: The FastCGI process exceeded configured request timeout: FastCGI process exceeded confi ...
- Swift - static和class的使用
Swift中表示 “类型范围作用域” 这一概念有两个不同的关键字,它们分别是static和class.这两个关键字确实都表达了这个意思,但是在其他一些语言,包括Objective-C中,我们并不会特别 ...
- sencha touch 分享到微博扩展
扩展代码: /* *分享到微博 */ Ext.define('ux.WeiboPicker', { extend: 'Ext.Picker', xtype: 'weiboPicker', config ...
- 理解proc目录与linux进程、ps命令、netstat命令的关系
零.proc目录简介 proc目录是虚拟文件系统(VFS)的一种实现,保存了进程信息(pid目录)和一些系统信息. 一.系统的信息 1.cpuinfo和meminfo两个文件 查看CPU和内存相关信息 ...
- ansible register基础使用讲解
当我们需要判断对执行了某个操作或者某个命令后,如何做相应的响应处理(执行其他 ansible 语句),则一般会用到register . 举个例子: 我们需要判断 zip 包是否存在,如果存在了就执行一 ...