原题地址:https://oj.leetcode.com/problems/edit-distance/

题意:

Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)

You have the following 3 operations permitted on a word:

a) Insert a character
b) Delete a character
c) Replace a character

解题思路:这道题是很有名的编辑距离问题。用动态规划来解决。状态转移方程是这样的:dp[i][j]表示word1[0...i-1]到word2[0...j-1]的编辑距离。而dp[i][0]显然等于i,因为只需要做i次删除操作就可以了。同理dp[0][i]也是如此,等于i,因为只需做i次插入操作就可以了。dp[i-1][j]变到dp[i][j]需要加1,因为word1[0...i-2]到word2[0...j-1]的距离是dp[i-1][j],而word1[0...i-1]到word1[0...i-2]需要执行一次删除,所以dp[i][j]=dp[i-1][j]+1;同理dp[i][j]=dp[i][j-1]+1,因为还需要加一次word2的插入操作。如果word[i-1]==word[j-1],则dp[i][j]=dp[i-1][j-1],如果word[i-1]!=word[j-1],那么需要执行一次替换replace操作,所以dp[i][j]=dp[i-1][j-1]+1,以上就是状态转移方程的推导。

代码:

class Solution:
# @return an integer
def minDistance(self, word1, word2):
m=len(word1)+1; n=len(word2)+1
dp = [[0 for i in range(n)] for j in range(m)]
for i in range(n):
dp[0][i]=i
for i in range(m):
dp[i][0]=i
for i in range(1,m):
for j in range(1,n):
dp[i][j]=min(dp[i-1][j]+1, dp[i][j-1]+1, dp[i-1][j-1]+(0 if word1[i-1]==word2[j-1] else 1))
return dp[m-1][n-1]

[leetcode]Edit Distance @ Python的更多相关文章

  1. [LeetCode] Edit Distance 编辑距离

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...

  2. Leetcode:Edit Distance 解题报告

    Edit Distance Given two words word1 and word2, find the minimum number of steps required to convert  ...

  3. [LeetCode] Edit Distance 字符串变换为另一字符串动态规划

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...

  4. Leetcode Edit Distance

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...

  5. [LeetCode] Edit Distance(很好的DP)

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...

  6. LeetCode: Edit Distance && 子序列题集

    Title: Given two words word1 and word2, find the minimum number of steps required to convert word1 t ...

  7. LeetCode——Edit Distance

    Question Given two words word1 and word2, find the minimum number of steps required to convert word1 ...

  8. [LeetCode] One Edit Distance 一个编辑距离

    Given two strings S and T, determine if they are both one edit distance apart. 这道题是之前那道Edit Distance ...

  9. Java for LeetCode 072 Edit Distance【HARD】

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...

随机推荐

  1. 异常日志框架Exceptionless结合.NET Core(本地部署)

    一.前言 1.分布式异常日志收集框架Exceptionless是开源的工具,根据官方给出的说明: Exceptionless可以为您的ASP.NET.Web API.WebFrm.WPF.控制台和MV ...

  2. [lisp] scheme学习2

    1.在scheme中,为了效率,对序对的操作 cons car 和cdr是内部实现的,这里是scheme实现, 其中cons用到了闭包 (define (cons a b) (define (disp ...

  3. SQL2008配置管理工具服务显示远程过程调用失败

    问题: 打开SQL2008配置管理工具,发现SQL服务名称里什么也没有,只有一个提示:   解决办法: 这是由于电脑中安装有Visual Stuido, 它内含一个本地SQL数据库服务:Microso ...

  4. 1038 一元三次方程求解 2001年NOIP全国联赛提高组

    题目描述 Description 有形如:ax3+bx2+cx+d=0  这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d  均为实数),并约定该方程存在三个不同实根(根的范围在-100 ...

  5. NOIP2015其余几道题

    T1: #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> # ...

  6. Consul功能简介

    Consul 是 HashiCorp 公司的一个用于实现分布式系统的服务发现与配置工具.Consul内置了服务注册与发现框 架.分布一致性协议实现.健康检查.Key/Value存储.多数据中心方案.由 ...

  7. HDU 4815 Little Tiger vs. Deep Monkey(2013长春现场赛C题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4815 简单的DP题. #include <stdio.h> #include <st ...

  8. 【Oracle】-【LRU和DBWR】-LRU算法与DBWR中的应用

    Oracle体系结构中经常看到LRU算法,Least Recently Used,也有叫“最近最少使用页面置换算法”,简单讲,Oracle会将内存中最近不用的数据库移出内存以腾出空间来加载另外的数据. ...

  9. 如何用visio(word)绘制图片表格

    1.用visio是插入excel表格,但是不能差如公示了,修改的话也是进入了excel修改. 2.在word里修改即可,word表格可以插入公式,然后阿银玉兰或者转给pdf截图就好

  10. 如何:声明、实例化和使用委托(C# 编程指南)

    委托的声明如下所示: C#   public delegate void Del<T>(T item); public void Notify(int i) { } C#   Del< ...