[leetcode]Edit Distance @ Python
原题地址:https://oj.leetcode.com/problems/edit-distance/
题意:
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
解题思路:这道题是很有名的编辑距离问题。用动态规划来解决。状态转移方程是这样的:dp[i][j]表示word1[0...i-1]到word2[0...j-1]的编辑距离。而dp[i][0]显然等于i,因为只需要做i次删除操作就可以了。同理dp[0][i]也是如此,等于i,因为只需做i次插入操作就可以了。dp[i-1][j]变到dp[i][j]需要加1,因为word1[0...i-2]到word2[0...j-1]的距离是dp[i-1][j],而word1[0...i-1]到word1[0...i-2]需要执行一次删除,所以dp[i][j]=dp[i-1][j]+1;同理dp[i][j]=dp[i][j-1]+1,因为还需要加一次word2的插入操作。如果word[i-1]==word[j-1],则dp[i][j]=dp[i-1][j-1],如果word[i-1]!=word[j-1],那么需要执行一次替换replace操作,所以dp[i][j]=dp[i-1][j-1]+1,以上就是状态转移方程的推导。
代码:
class Solution:
# @return an integer
def minDistance(self, word1, word2):
m=len(word1)+1; n=len(word2)+1
dp = [[0 for i in range(n)] for j in range(m)]
for i in range(n):
dp[0][i]=i
for i in range(m):
dp[i][0]=i
for i in range(1,m):
for j in range(1,n):
dp[i][j]=min(dp[i-1][j]+1, dp[i][j-1]+1, dp[i-1][j-1]+(0 if word1[i-1]==word2[j-1] else 1))
return dp[m-1][n-1]
[leetcode]Edit Distance @ Python的更多相关文章
- [LeetCode] Edit Distance 编辑距离
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...
- Leetcode:Edit Distance 解题报告
Edit Distance Given two words word1 and word2, find the minimum number of steps required to convert ...
- [LeetCode] Edit Distance 字符串变换为另一字符串动态规划
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...
- Leetcode Edit Distance
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...
- [LeetCode] Edit Distance(很好的DP)
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...
- LeetCode: Edit Distance && 子序列题集
Title: Given two words word1 and word2, find the minimum number of steps required to convert word1 t ...
- LeetCode——Edit Distance
Question Given two words word1 and word2, find the minimum number of steps required to convert word1 ...
- [LeetCode] One Edit Distance 一个编辑距离
Given two strings S and T, determine if they are both one edit distance apart. 这道题是之前那道Edit Distance ...
- Java for LeetCode 072 Edit Distance【HARD】
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...
随机推荐
- 循序渐进学.Net Core Web Api开发系列【9】:常用的数据库操作
系列目录 循序渐进学.Net Core Web Api开发系列目录 本系列涉及到的源码下载地址:https://github.com/seabluescn/Blog_WebApi 一.概述 本篇描述一 ...
- 【BZOJ 4569】 4569: [Scoi2016]萌萌哒 (倍增+并查集)
4569: [Scoi2016]萌萌哒 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 865 Solved: 414 Description 一个长 ...
- Educational Codeforces Round 14 A. Fashion in Berland 水题
A. Fashion in Berland 题目连接: http://www.codeforces.com/contest/691/problem/A Description According to ...
- MikroTik RouterOS 5.x使用HunterTik 2.3.1进行破解
一.加载光驱: 二.一路回车: 三.说明: 1.可以不安装Debian内核,但如果在无缝升级到6.6的版本,此项就一定要选择. 2.6版本的破解必须小于等于1G的空间,不然无法破解成功,亲测有效,如果 ...
- java execute、executeQuery和executeUpdate之间的区别
在用纯JSP做一个页面报警功能的时候习惯性的用executeQuery来执行SQL语句,结果执行update时就遇到问题,语句能执行,但返回结果出现问题,另外还忽略了executeUpdate的返回值 ...
- Consul功能简介
Consul 是 HashiCorp 公司的一个用于实现分布式系统的服务发现与配置工具.Consul内置了服务注册与发现框 架.分布一致性协议实现.健康检查.Key/Value存储.多数据中心方案.由 ...
- STM32F4 Timer External Clock TI2 Both Edges Demo
#define CLK_FREQ ( 10000 ) #define CORE_FREQ ( 168000000 ) static void TIM_GPIO_Config( void ) { GPI ...
- JTAG Simplified
JTAG Simplified So the other day, I explored the JTAG bus interface which is frequently found in CPL ...
- 在Windows Azure上创建ASP.NET MVC网站
本篇体验在Windows Azure上创建ASP.NET MVC网站. →登录到Windows Azure管理门户 →点击左下方的"新建" →点击"自定义创建" ...
- 【tensorflow】1.安装Tensorflow开发环境,安装Python 的IDE--PyCharm
================================================== 安装Tensorflow开发环境,安装Python 的IDE--PyCharm 1.PyCharm ...