定义

若整数 $a$ 和整数 $b$ 除以正整数 $m$ 的余数相等,则称 $a,b$ 模 $m$ 同余,记为:

$$a \equiv b(mod \text{ } m)$$

同余类与剩余系

对于 $\forall a\in [0,m-1]$ ,集合 $\{ a+km \}$ $(k \in \mathbb{N})$ 的所有数模 $m$ 同余,余数都是 $a$ 。该集合称为一个模 $m$ 的同余类,简记为 $\overline{a}$ 。

由对于模n同余的所有整数组成的这个集合称为同余类,同余类中的每个元素都可以拿来代表该同余类,称为该同余类的代表数,如模 $10$ 的同余类 $\overline{1}, \overline{11}, \overline{21}$ 其实是同一个集合。

模 $m$ 的同余类一共有 $m$ 个,分别为 $\overline{0}, \overline{1}, \overline{2} \dots, \overline{m-1}$ ,它们构成 $m$ 的完全剩余系

$1 \sim m$ 中与 $m$ 互质的数代表的同余类共有 $\varphi(m)$ 个,他它们构成了 $m$ 的简化剩余系,例如模10的简化剩余系为 ${\overline{1}, \overline{3}, \overline{7}, \overline{9}}$ 或 ${\overline{11}, \overline{13}, \overline{27}, \overline{29}}$ 。

简化剩余系关于模 $m$ 乘法封闭,因为:若 $gcd(a,m)=1$ 且 $gcd(b,m)=1$,其中 $1 \le a,b \le m$ ,则 $a \ast b$ 也不可能与 $m$ 含有相同的质因子,即 $gcd(a \ast b,m)=1$ 再由余数的定义即可得到 $gcd(a \ast b \text{ } mod \text{ } m,m)=1$ (参考下面的证明),即 $a \ast b \text{ } mod \text{ } m$ 也属于 $m$ 的简化剩余系。

证明:
已知: $gcd(a,m)=1$
求证: $gcd(a \text{ } mod \text{ }m, m)=1$
证明:
$a$ 的余数可以表示为 $a+km,k\in\mathbb{Z}$
设 $gcd(a+km,m)=d\neq1$
则 $a+km=pd,m=qd$
将 $m=qd$ 代入 $a+km=pd$ 得 $a+kqd=pd$
移项、合并同类项得 $a=d(p-kq)$
这样 $d|a,d|m$ ,所以 $gcd(a,m)\ge d\ne1$
与 $gcd(a,m)=1$ 矛盾
证毕。

费马小定理

若 $p$ 是质数,则对于任意整数 $a$ ,有 $a^p \equiv a(mod \text{ }p)$ 。

欧拉定理

正整数 $a,n$ 互质,则 $a^{\varphi(n)} \equiv1(mod \text{ }n)$,其中 $\varphi(n)$ 为欧拉函数。

即:假如 $a$ 是一个整数, $p$ 是一个质数,那么 $a^{p}-a$ 是p的倍数。

如果a不是p的倍数,这个定理也可以写成 $a^{p-1} \equiv 1(mod \text{ }p)$ 。

证明:

设 $n$ 的简化剩余系为 $\{ \overline{a_1}, \overline{a_2}, \overline{a_3} \dots \overline{a_{\varphi(n)}}\}$ 。对 $\forall a_i,a_j$ ,若 $a \ast a_i \equiv a \ast a_j (mod \text{ } n)$ ,则移项、合并同类项得 $a \ast (a_i - a_j) \equiv 0$ 。因为 $a,n$ 互质,所以 $a_i - a_j=0$ ,即 $a_i \equiv a_j$ 。故当 $a_i \ne a_j$ 时, $a a_i,a a_j$ 也代表不同的同余系。

又因为简化同余系关于模 $n$ 乘法封闭,故 $a a_i$ 也在简化剩余系集合中。因此 $\{a_1, a_2, a_3 \dots a_{\varphi(n)} \}$ 与 $\{a a_1, a a_2, a a_3 \dots a a_{\varphi(n)} \}$ 都能表示 $n$ 的简化剩余系。综上所述:

$$a^{\varphi(n)} a_1 a_2 \dots a_{\varphi(n)} \equiv (a a_1) (a a_2) \dots (a a_{\varphi(n)}) \equiv a_1 a_2 \dots a_{\varphi(n)} (mod \text{ } n)$$

因此:

$$a^{\varphi(n)}} \equiv 1 (mod \text{ } n)$$

当 $p$ 是质数时, $\varphi(p)=p-1$,并且只有 $p$ 的倍数与 $p$ 不互质。所以,只要 $a$ 不是 $p$ 的倍数,就有 $a^{p-1} \equiv 1(mod \text{ }p)$ ,两边同时乘上 $a$ 就是费马小定理。另外,若 $a$ 是 $p$ 的倍数,费马小定理显然成立。

证毕。

欧拉定理的推论

正整数 $a,n$ 互质,则对于任意的正整数 $b$ ,有

$a^b \equiv a^{b \text{ } mod \text{ } \varphi(n)} (mod \text{ } n)$

证明:

设 $b=q \ast \varphi(n)+r$ ,其中 $0 \le r < \varphi(n)$ ,即 $r=b \text{ } mod \text{ } \varphi(n)$ 。于是:

$a^b \equiv a^{q \ast \varphi(n)+r} \equiv (a^q)^{\varphi(n)} \ast a^r \equiv 1^q \ast a^r \equiv a^r \equiv a^{b \text{ } mod \text{ } \varphi(n)}(mod \text{ } n)$

证毕。

特别地,当 $a,n$ 不一定互质且 $b>\varphi(n)$ 时,有

$a^b \equiv a^{b \text{ } mod \text{ } \varphi(n)+\varphi(n)} (mod \text{ } n)$

证明方法:指数循环节,留个坑,以后再填。

应用:

许多计数类题目要求把答案对一个质数 $p$ 取模后输出,在计算 $a+b, a\ast b$ 这样的算式时,就可以先把 $a,b$ 对 $p$ 取模,再进行运算。而对于形如 $a^p$ 的乘方算式,可以先将底数 $a$ 对 $p$ 取模、指数 $p$ 对 $\varphi(n)$ 取模,再进行计算,避免溢出。

0x33 同余的更多相关文章

  1. 算法竞赛进阶指南0x33同余

    定义 如果整数a,b除以正整数m的余数相同,那么a,b模m同余 . 知识点 拓展欧几里得算法 代码 #include <bits/stdc++.h> using namespace std ...

  2. float 对整形的取余运算

    取余是针对整形的,但是有时候一些特殊需求,我们需要 float 型对整形取下余数.比如,将角度化到 0- 360 范围内. 今天看到 lua 的实现方式: a % b == a - math.floo ...

  3. JS利用取余实现toggle多函数

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  4. salesforce 零基础学习(四十三)运算取余

    工作中遇到一个简单的小问题,判断两个数是否整除,如果不整除,获取相关的余数. 习惯java的我毫不犹豫的写下了代码 public Boolean isDivisibility(Integer divi ...

  5. poj1006Biorhythms(同余定理)

    转自:http://blog.csdn.net/dongfengkuayue/article/details/6461298 本文转自head for better博客,版权归其所有,代码系本人自己编 ...

  6. PHP大数(浮点数)取余

    一般我们进行取余运算第一个想到的就是用百分号%,但当除数是个很大的数值,超出了int范围时,这样取余就不准确了. php大数(浮点数)取余函数 /** * php大数取余 * * @param int ...

  7. NOIP2014 uoj20解方程 数论(同余)

    又是数论题 Q&A Q:你TM做数论上瘾了吗 A:没办法我数论太差了,得多练(shui)啊 题意 题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, ...

  8. JAVA中取余(%)规则和介绍

    在java中%的含义为取余. java :a%b 数学公式a%b=a-(a/b)*b

  9. 【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】

    还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. ...

随机推荐

  1. ArrayList的add方法实现

    ArrayList的底层是由数组实现,所以所有的操作都是围绕数组展开,要想理解add方法,就得先了解数组的增加,所以我们先实现一个数组的add,数组的添加可以从尾部增加或者其他位置插入, 如果在数组的 ...

  2. Java实现异步调用

    一.创建线程 @Test public void test0() throws Exception { System.out.println("main函数开始执行"); Thre ...

  3. 对象属性 Object.getOwnPropertyNames() Object.keys for...in

    1.Object.getOwnPropertyNames()方法返回一个由指定对象的所有自身属性的属性名(包括不可枚举属性但不包括Symbol值作为名称的属性)组成的数组. Object.getOwn ...

  4. Docker学习第二天-容器

    Docker 容器 容器是 Docker 又一核心概念. 简单的说,容器是独立运行的一个或一组应用,以及它们的运行态环境.对应的,虚拟机可以理解为模拟运行的一整套操作系统(提供了运行态环境和其他系统环 ...

  5. 不调用free会内存泄露吗?

    内存泄露的概念大家可以自行百度下,本文不做阐述.本文要讲的是在程序中分配了内存,但是最后没有使用free()函数来释放这块内存,会导致内存泄露吗?比如有如下代码: #include <stdio ...

  6. 无法在<fastCGI>应用程序配置中找到<handler> scriptProcessor

    在打开php文件的时候发现iis7.5报错了 每次在切换php版本的时候不知道为什么会出现这个错误,有的时候就又不会报错直接可以正常使用,然而php版本确定已经下载好,才可能的打开这个页面,那么就是i ...

  7. 【题解】Unit Fraction Partition-C++

    Description给出数字P,Q,A,N,代表将分数P/Q分解成至多N个分数之和,这些分数的分子全为1,且分母的乘积不超过A.例如当输入数据为2 3 120 3时,我们可以得到以下几种分法: In ...

  8. 所谓guard进程不能启动

    1.网络开关的配置是true还是false? 2.服务里有个循环,所以不用打messagebox也是可以调试的. 3.虽然调式时条件变量已经变化,可以把断点拉到促成这个变化的逻辑路径上. 4.可以在调 ...

  9. 比赛:小奔的矩形solution

    分析: 交叉相乘,然后除以最大公因数(为了减少爆常数的可能性std做了两次,数据很大),得到的两个数相加减二就是答案 代码: var p,q,n,m,a,b,i:int64; begin readln ...

  10. Orleans 知多少 | 2. 核心概念一览

    Orleans 术语解读 上面这张图中包含了Orleans中的几个核心概念: Grain Silo Orleans Cluster Orleans Client 从这张图,我们应该能理清他们之间的关系 ...