poj 2115 求线性同余方程 C Looooops(好理解欧几里德扩展定理怎么应用)
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 29061 | Accepted: 8360 |
Description
for (variable = A; variable != B; variable += C)
statement;
I.e., a loop which starts by setting variable to value A and while variable is not equal to B, repeats statement followed by increasing the variable by C. We want to know how many times does the statement get executed for particular values of A, B and C, assuming that all arithmetics is calculated in a k-bit unsigned integer type (with values 0 <= x < 2k) modulo 2k.
Input
The input is finished by a line containing four zeros.
Output
Sample Input
3 3 2 16
3 7 2 16
7 3 2 16
3 4 2 16
0 0 0 0
Sample Output
0
2
32766
FOREVER
大致题意:
对于C的for(i=A ; i!=B ;i +=C)循环语句,问在k位存储系统中循环几次才会结束。
若在有限次内结束,则输出循环次数。
否则输出死循环。
解题思路:
题意不难理解,只是利用了 k位存储系统 的数据特性进行循环。
例如int型是16位的,那么int能保存2^16个数据,即最大数为65535(本题默认为无符号),
当循环使得i超过65535时,则i会返回0重新开始计数
如i=65534,当i+=3时,i=1
其实就是 i=(65534+3)%(2^16)=1
由此我们可以得到一个方程 A+CX = B(modn)n = 1 << k;
即 CX = (B-A)% n;
b = B-A;
该方程有解的充要条件为 gcd(C,n) | b ,即 b% gcd(a,n)==0
所以当b% gcd(C,n)!=0方程无解输出FOREVER
然后再求b%gcd(C,n)为0时的最小x解
令d = gcd(C,n)
引入欧几里得扩展方程 d=Cx+by
(即最开始求CX+ny=1的方程解,最后再乘(b/d)) 用欧几里德扩展定理求出x(最小解)与gcd(X,n)
注意x0可能为负,因此要先 + n/d 再模n/d。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std; typedef long long ll;
int a,b,c,k; ll exgcd(ll a,ll b,ll &x,ll &y){
if(b == ){
x = ;
y = ;
return a;
}
ll d = exgcd(b,a%b,x,y);
ll tmp = x;
x = y;
y = tmp - a/b*y;
return d;
} ll quick_mod(ll a,ll b){
ll ans = ;
while(b){
if(b%!=){
ans *= a;
b --;
}
b /= ;
a *= a;
}
return ans;
}
int main(){
while(cin >> a >> b >> c >> k){
if(!a && !b && !c && !k){
break;
}
ll n = quick_mod(,k);
ll x,y;
ll d = exgcd(c,n,x,y); //求a,n的最大公约数d=gcd(c,n)和方程d=cx+by的系数x、y
b = b - a;
if( b%d != ){//方程 cx=b(mod n) 无解
cout << "FOREVER" << endl;
continue;
}
x = (x*(b/d))%n; //方程cx=b(mod n)的最小解
x = (x%(n/d)+n/d)%(n/d); //方程ax=b(mod n)的最小正整数解
cout << x << endl;
}
return ;
}
poj 2115 求线性同余方程 C Looooops(好理解欧几里德扩展定理怎么应用)的更多相关文章
- 初等数论-Base-2(扩展欧几里得算法,同余,线性同余方程,(附:裴蜀定理的证明))
我们接着上面的欧几里得算法说 扩展欧几里得算法 扩展欧几里德算法是用来在已知a, b求解一组x,y,使它们满足贝祖等式\(^①\): ax+by = gcd(a, b) =d(解一定存在,根据数论中的 ...
- POJ 2115 C Looooops (扩展欧几里德 + 线性同余方程)
分析:这个题主要考察的是对线性同余方程的理解,根据题目中给出的a,b,c,d,不难的出这样的式子,(a+k*c) % (1<<d) = b; 题目要求我们在有解的情况下求出最小的解,我们转 ...
- POJ - 2115 C Looooops(扩展欧几里德求解模线性方程(线性同余方程))
d.对于这个循环, for (variable = A; variable != B; variable += C) statement; 给出A,B,C,求在k位存储系统下的循环次数. 例如k=4时 ...
- POJ2115:C Looooops(一元线性同余方程)
题目: http://poj.org/problem?id=2115 要求: 会求最优解,会求这d个解,即(x+(i-1)*b/d)modm;(看最后那个博客的链接地址) 前两天用二元一次线性方程解过 ...
- POJ 1061 - 青蛙的约会 - [exgcd求解一元线性同余方程]
先上干货: 定理1: 如果d = gcd(a,b),则必能找到正的或负的整数k和l,使ax + by = d. (参考exgcd:http://www.cnblogs.com/dilthey/p/68 ...
- POJ2115 C Looooops(线性同余方程)
无符号k位数溢出就相当于mod 2k,然后设循环x次A等于B,就可以列出方程: $$ Cx+A \equiv B \pmod {2^k} $$ $$ Cx \equiv B-A \pmod {2^k} ...
- POJ 2115 C Looooops(扩展欧几里得应用)
题目地址:POJ 2115 水题. . 公式非常好推.最直接的公式就是a+n*c==b+m*2^k.然后能够变形为模线性方程的样子,就是 n*c+m*2^k==b-a.即求n*c==(b-a)mod( ...
- POJ 2115 C Looooops扩展欧几里得
题意不难理解,看了后就能得出下列式子: (A+C*x-B)mod(2^k)=0 即(C*x)mod(2^k)=(B-A)mod(2^k) 利用模线性方程(线性同余方程)即可求解 模板直达车 #incl ...
- poj2115-C Looooops -线性同余方程
线性同余方程的模板题.和青蛙的约会一样. #include <cstdio> #include <cstring> #define LL long long using nam ...
随机推荐
- 对于HTTP过程中POST内容加密的解决方案
0x00前言 前几天我师傅和我提及了这件事情 正常情况下 抓包过程中遇到加密情况会很迷茫 昨天把这个都弄了一下 也感谢大佬中间的指导 我一开始看到密码的类型下意识的是base64 但是去解密发现不对 ...
- Go组件学习——gorm四步带你搞定DB增删改查
1.简介 ORM Object-Relationl Mapping, 它的作用是映射数据库和对象之间的关系,方便我们在实现数据库操作的时候不用去写复杂的sql语句,把对数据库的操作上升到对于对象的操作 ...
- 信息收集框架——recon-ng
背景:在渗透测试前期做攻击面发现(信息收集)时候往往需要用到很多工具,最后再将搜集到的信息汇总到一块. 现在有这样一个现成的框架,里面集成了许多信息收集模块.信息存储数据库.以及报告 ...
- Python 学习笔记(6)— 字符串格式化
字符串格式化处理 远古写法 以前通常使用运算符号 % ,%s 插入的值 String 类型,%.3f 指插入的值为包含 3 位小数的浮点数: format1 = "%s, %s!" ...
- 从MYSQL的ibtmp1文件太大说起
1. 啥情况呀 测试环境机器磁盘空间不足的告警打破了下午的沉寂,一群人开始忙活着删数据.但是,不久前刚清理了一波数据,测试环境在没做压测的情况下不至于短短一个月不到就涨了200G数据,于是,我悄悄的 ...
- R 实用命令 1
Quit and restart a clean R session from within R? If you're in RStudio: command/ctrl + shift + F10 . ...
- Nacos(三):Nacos与OpenFeign的对接使用
前言 上篇文章中,简单介绍了如何在SpringCloud项目中接入Nacos作为注册中心,其中服务消费者是通过RestTemplate+Ribbon的方式来进行服务调用的. 实际上在日常项目中服务间调 ...
- 重新学习MySQL数据库开篇:数据库的前世今生
本文内容出自刘欣的"码农翻身"公众号,强烈推荐刘欣大大的文章. 数据库的前世今生 小李的数据库之旅 无纸化办公 小李是这个大学计算机科学与技术系的知名学生,他的编程能力了得,使 ...
- 《Head First 设计模式》笔记
第一章 策略模式 00设计原则:找出应用中可能需要变化之处,把它们独立出来,不要和那些不需要变化的代码放在一起. 把会变化的部分取出并封装起来,好让其它部分不会受到影响.结果如何?代码变化引起的不经意 ...
- .Net使用HttpClient以multipart/form-data形式post上传文件及其相关参数
前言: 本次要讲的是使用.Net HttpClient拼接multipark/form-data形式post上传文件和相关参数,并接收到上传文件成功后返回过来的结果(图片地址,和是否成功).可能有很多 ...