SDU暑期集训排位(4)


C. Pick Your Team

题意 有 \(n\) 个人,每个人有能力值,A 和 B 轮流选人,A 先选,B 选人按照一种给出的优先级,
A 可以随便选。A 想最大化己方能力值。

做法

  • 划分方案合法的充要条件:任何前缀中,\(被 B 选择的人 - 被 A 选择的人 > -1\)
  • 考虑 DP,\(dp[i][j]\) 表示考虑前 \(i\) 个人,\(j\) 个人被 B 选择了,A 和 B 最大分差。
  • 考虑转移,枚举 \(i+1\) 个人归属即可。

D. Piece of Cake

题意 一个凸多边形上随机选k个顶点,求构成的凸多边形的面积的期望
做法

  • 看成总面积减去一些由连续的几个点组成的多边形的面积
  • 由x个点组成的多边形被减去的概率为\(\frac{C_{n-x}^{k-2}}{C_n^k}\)
  • 这个概率要先约一约再算,而且要乘除交替计算,否则会爆精度
  • 没注意复杂度T两发实属智障

E.Busy Board

题意

做法

各种特判套在一起就行了,无法用语言描述


F. It's a Mod, Mod, Mod, Mod World

题意 求 \(\sum_{i=1}^{n}[pi\%q]\)

做法

  • GCD 的经典应用。
  • \(\sum_{i=1}^{n}[pi\%q] = \sum_{i=1}^{n} (pi-[\frac{pi}{q}]q)=(\sum_{i=1}^{n}pi)-q(\sum_{i=1}^{n}[\frac{pi}{q}])\)
  • 只需求 \(f(n,p,q)=\sum_{i=1}^{n}[\frac{pi}{q}]\)
  • 若 \(p\geq q\) 可递归到 \(f(n,p\%q,q)\)
  • 若 \(p<q\) 可枚举 \(x\),统计 \([\frac{pi}{q}]\geq x\) 的 \(i\) 方案数,即可交换 \(p,q\)
  • 更详细介绍见2009年论文 金斌《欧几里得算法的应用》

G.Monotony

题意 给定一个矩阵,问其有多少个子矩阵满足行列单调性

题解

  • 枚举选哪些行
  • 特判哪些列在选了这些行之后是合法的
  • 考虑到,只选两列就能确定行的单调性,所以可以\(DP\)
  • \(DP[mask][j]\) : 选了第\(j\)列,并且行的单调性为\(mask\)的方案数
  • 然后枚举下一个\(k\),往后转移即可

I.Intersecting Rectangles

题意 给定n个矩形,问是否有交

做法

  • 扫描线
  • 从小到大枚举横坐标,如果是矩形左边界,查询上下边界内是否有点被标记,有的话直接输出yes,否则把上下边界打上标记,如果是右边界,消去边界
  • 然后交换x,y坐标,再来一次

J. Cutting Strings

upsolved

题意 给一个字符串,可以截取下 \(k\) 段,使得字典序最大。

做法

  • idea 比较简单,逐位考虑,我们先想让 'z' 字符的前缀尽可能长,以此为前提接下来想让之后的 'y' 尽可能长........
  • 递归地求解 \(solve(pos,k,ch)\),在 \(suffix(pos)\) 中,我们想构造尽可能长的 ch 前缀,至多可以切 \(k\) 刀。
    • 如果 s[pos] = ch,第一段连续的 ch 一定可以拿,我们可以递归到 \(solve(nex,k,ch)\),\(nex\) 为下一个不为 ch 的位置。
    • 否则,考虑连续的 ch 的段,设这些段分别为 \([l_1,r_1],[l_2,r_2]....[l_m,r_m]\)
      • 如果 \(k \geq m\),那么这些 \(suffix(pos)\) 中所有的 \(ch\) 都可以加入到答案中,递归到 \(solve(r_m + 1, k-m, ch-1)\)
      • 否则,我们可以在这 \(m\) 段中,枚举最后一个区间的位置,堆维护前 \(k-1\) 大值,再枚举最后一个区间的位置,在可能成为答案的后缀中挑选字典序最大的即可。

code


K. Subsequences in Substrings

做法 序列自动机,预处理位置 \(x\) 下一个字符 \(ch\) 在哪,枚举起点,然后往后跳。复杂度 \(O(|S|*|T|)\)


M. XOR Sequences

upsolved
题意 给定\(p_0,p_1,...,p_{2^m-1}\)求有多少长度为n的序列\({x}\)满足\(p_i=argmax\ i⊕x_j\)
做法

  • 考虑从顶向下建x的trie树
  • 对于当前点,如果左树和右树的每个元素对应相等,那么只有左儿子或者只有右儿子,答案乘2,然后递归建左儿子或右儿子
  • 不是对应相等的话说明既有左儿子又有右儿子,需要左树和右树的元素没有交集,然后递归建左儿子和右儿子
  • 此题原榜过穿了,是个简单题,就是看起来很吓人
  • 当时一看就没思路,其实算下样例也就会了

SDU暑期集训排位(4)的更多相关文章

  1. SDU暑期集训排位(9)

    SDU暑期集训排位(9) G. Just Some Permutations 基础 DP 练习部分 定义 \(f(S)\),表示让 S 中的人全 happy 的方案数. \(dp[i][j]\) 表示 ...

  2. SDU暑期集训排位(5)

    SDU暑期集训排位(5) A. You're in the Army Now 题意 类似选志愿.每个人有 mark,有优先级从高到低的志愿. 做法 定睛一看,鲨鼻题.然后 WA. 为什么会 WA 呢? ...

  3. SDU暑期集训排位(8)

    A. A Giveaway 签到 B. Game of XOR 做法 dp[G][L][R]表示在倒数第G代,左边的数是L,右边的数是R,下面共有多少个0和1 区间和转换成两次前缀和和一次单点查询 利 ...

  4. SDU暑期集训排位(3)

    B. Mysterious LCM 做法 保留 \(a_i|x\) 的元素,其它元素解体. \(a_i\) 的某个质因子的指数,要和 \(x\) 的这个质因子一样多,才有贡献,否则这个质因子它在划水啊 ...

  5. SDU暑期集训排位(2)

    A. Art solved by sdcgvhgj 3min 签到 B. Biology solved by sdcgvhgj 85min 暴力 C - Computer Science solved ...

  6. 2014年CCNU-ACM暑期集训总结

    2014年CCNU-ACM暑期集训总结 那个本期待已久的暑期集训居然就这种.溜走了.让自己有点措手不及.很多其它的是对自己的疑问.自己是否能在ACM这个领域有所成就.带着这个疑问,先对这个暑假做个总结 ...

  7. 8.10 正睿暑期集训营 Day7

    目录 2018.8.10 正睿暑期集训营 Day7 总结 A 花园(思路) B 归来(Tarjan 拓扑) C 机场(凸函数 点分治) 考试代码 A B C 2018.8.10 正睿暑期集训营 Day ...

  8. 8.6 正睿暑期集训营 Day3

    目录 2018.8.6 正睿暑期集训营 Day3 A 亵渎(DP) B 绕口令(KMP) C 最远点(LCT) 考试代码 A B C 2018.8.6 正睿暑期集训营 Day3 时间:5h(实际) 期 ...

  9. 8.9 正睿暑期集训营 Day6

    目录 2018.8.9 正睿暑期集训营 Day6 A 萌新拆塔(状压DP) B 奇迹暖暖 C 风花雪月(DP) 考试代码 A B C 2018.8.9 正睿暑期集训营 Day6 时间:2.5h(实际) ...

随机推荐

  1. ios开发--给应用添加新的字体的方法

    1.网上搜索字体文件(后缀名为.ttf,或.odf) 2.把字体库导入到工程的resouce中 3.在程序添加以下代码 输出所有字体 NSArray *familyNames = [UIFont fa ...

  2. 异步编程CompletableFuture实现高并发系统优化之请求合并

    先说场景: 根据Redis官网介绍,单机版Redis的读写性能是12万/秒,批量处理可以达到70万/秒.不管是缓存或者是数据库,都有批量处理的功能.当我们的系统达到瓶颈的时候,我们考虑充分的压榨缓存和 ...

  3. dubbo负载均衡是如何实现的?

    dubbo的负载均衡全部由AbstractLoadBalance的子类来实现 RandomLoadBalance 随机 在一个截面上碰撞的概率高,但调用量越大分布越均匀,而且按概率使用权重后也比较均匀 ...

  4. Unittest 支持 case 失败后自动截图功能的另外两种方式

    原生的unittest框架是不支持case失败后自动截图的功能的,网上看了大家的解决办法,大体上分为两种:1.要么加装饰器2.也有人封装断言这里我们看看还有没有其他的更加方便的方法值得大家一起探讨一下 ...

  5. Tomcat 单(多)实例部署使用

    一.前言 (一).概述 Tomcat 是由 Apache 开发的一个 Servlet 容器,实现了对 Servlet 和 JSP 的支持,并提供了作为Web服务器的一些特有功能,如Tomcat管理和控 ...

  6. elk系列教程:docker中安装配置elk

    elasticSearch Docker安装elasticsearch: docker pull docker.io/elasticsearch:7.2.0 启动: docker run -p 920 ...

  7. SonarQube系列二、分析dotnet core/C#代码

    [前言] 本系列主要讲述sonarqube的安装部署以及如何集成jenkins自动化分析.netcore项目.目录如下: SonarQube系列一.Linux安装与部署 SonarQube系列二.分析 ...

  8. HTML5标签的使用和作用

    在菜鸟教程中找了一些关于HTML5的知识点,觉得很有用,可以整理一下,以后使用. 这是一个基本的HTML5文档: <!DOCTYPE html><html><head&g ...

  9. Rootkit与后门隐藏技术

    目录 简介 linux虚拟文件系统VFS rootkit的功能 隐藏文件 基本方法 高级方法 系统调用流程 hook sys_getdents sys_getdents的调用树 最底层的方法 隐藏进程 ...

  10. sql server数据库查询链接服务器

    服务器对象->链接服务器: 或者 select  * from sys.servers: 找到服务器对象名称 select  * from [服务器对象名称].[数据库名称].dbo.[表名]: