NOIP2009 Hankson 的趣味题 : 数论
题目描述
Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson。现在,刚刚放学回家的 Hankson 正在思考一个有趣的问题。
今天在课堂上,老师讲解了如何求两个正整数 c1 和 c2 的最大公约数和最小公倍数。现在 Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个“求公约数”和“求公倍数”之类问题的“逆问题”,这个问题是这样的:已知正整数 a0,a1,b0,b1,设某未知正整数 x 满足:
1. x 和 a0 的最大公约数是 a1;
2. x 和 b0 的最小公倍数是 b1。
Hankson 的“逆问题”就是求出满足条件的正整数 x。但稍加思索之后,他发现这样的x 并不唯一,甚至可能不存在。因此他转而开始考虑如何求解满足条件的 x 的个数。请你帮助他编程求解这个问题。
输入输出格式
输入格式:
第一行为一个正整数 n,表示有 n 组输入数据。接下来的 n 行每行一组输入数据,为四个正整数 a0,a1,b0,b1,每两个整数之间用一个空格隔开。输入数据保证 a0 能被 a1 整除,b1 能被 b0 整除。
输出格式:
输出文件 son.out 共 n 行。每组输入数据的输出结果占一行,为一个整数。
对于每组数据:若不存在这样的 x,请输出 0;
若存在这样的 x,请输出满足条件的 x 的个数;
输入输出样例
2
41 1 96 288
95 1 37 1776
6
2
说明
【说明】
第一组输入数据,x 可以是 9、18、36、72、144、288,共有 6 个。
第二组输入数据,x 可以是 48、1776,共有 2 个。
【数据范围】
对于 50%的数据,保证有 1≤a0,a1,b0,b1≤10000 且 n≤100。
对于 100%的数据,保证有 1≤a0,a1,b0,b1≤2,000,000,000 且 n≤2000。
NOIP 2009 提高组 第二题
// 来源:洛谷
进行一波数学推导:
gcd(x, a0) = a1
—> x = k1 * a1, a0 = k 2 * a1;
—> gcd(k1, k2) = 1
  pf : 假设gcd(k1, k2) != 1;
设K = gcd(k1, k2);
    ->k1 = K * p,   k2 = K * q;
->x = p * K * a1, a0 = q * K * a1;
->gcd(x, a0) = K * a1 != a1;
假设不成立;
所以 : gcd(x, y) = k -> gcd(x / k , y / k ) = 1;
gcd(x / a1, a0 / a1) = 1;
接着
lcm(x, b0) * gcd(x, b0) = x * b0;
—> gcd(x, b0) = x * b0 / b1;
—> gcd(b1 / b0 , b1 / x) = 1;
仔细研究上面的两个等式 : x 是 a1 的倍数, x 是 b1 的约数;
可以枚举b1的约数, 然后判断上边两个等式, 成立就++;
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
#define ing long long int T, n;
int a0, a1, b0, b1; int Gcd(int x, int y)
{
return y == ? x : Gcd(y, x % y);
} signed main()
{
cin >> T;
while(T--)
{
int cnt = ;
scanf("%lld%lld%lld%lld", &a0, &a1, &b0, &b1); for(register int i = ; i * i <= b1 ; i ++)
{
if(b1 % i != ) continue; int g = Gcd(i / a1 , a0 / a1);
int gg = Gcd(b1 / b0, b1 / i); if(i % a1 == && g == && gg == )
{
cnt++;
} int j = b1 / i; if(i == j) continue; int c = Gcd(j / a1, a0 / a1);
int cc = Gcd(b1 / b0, b1 / j); if(j % a1 == && c == && cc == ) cnt++; } printf("%lld\n", cnt);
}
return ; }
zZhBr
NOIP2009 Hankson 的趣味题 : 数论的更多相关文章
- [NOIP2009] $Hankson$ 的趣味题 (数论,gcd)
		
题目链接 Solution 此题,用到的结论都是比较浅显的,但是,我竟然没想到反过来枚举... 只有50分... 被自己蠢哭... 结论比较浅显: 1.对于两个正整数\(a\),\(b\),设 \(g ...
 - 1172 Hankson 的趣味题[数论]
		
1172 Hankson 的趣味题 2009年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 题目描述 Descrip ...
 - 洛谷P1072 [NOIP2009] Hankson 的趣味题
		
P1072 Hankson 的趣味题 题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson 正在思考一 ...
 - NOIP2009 Hankson的趣味题
		
题目描述 Description Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Hankson.现在,刚刚放学回家的Hankson 正在思考一个有趣的问题.今天在 ...
 - [NOIp2009] $Hankson$ 的趣味题
		
类型:数论 传送门:>Here< 题意:给出四个数$a_0,a_1,b_0,b_1$,求满足$gcd(x,a_0)=a_1,lcm(x,b_0)=b_1$的$x$的个数 解题思路 显然$a ...
 - P1072 Hankson 的趣味题[数论]
		
题目描述 Hanks 博士是 BT(Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲解了 ...
 - luogu1072 [NOIp2009]Hankson的趣味题 (数学+STL::set)
		
一个JSB做法 由$\frac{x*b0}{gcd(x,b0)}=b1$,可得$\frac{x}{gcd(x,b0)}=\frac{b1}{b0}$ 设$b2=\frac{b1}{b0}$ 所以对$b ...
 - NOIP 2009 Hankson 的趣味题
		
洛谷 P1072 Hankson 的趣味题 洛谷传送门 JDOJ 1648: [NOIP2009]Hankson的趣味题 T2 JDOJ传送门 Description Hanks 博士是BT (Bio ...
 - 「NOIP2009」Hankson 的趣味题
		
Hankson 的趣味题 [内存限制:$128 MiB$][时间限制:$1000 ms$] [标准输入输出][题目类型:传统][评测方式:文本比较] 题目描述 Hanks 博士是 BT(Bio-Tec ...
 
随机推荐
- Visual Studio Code安装Python环境
			
如何在全宇宙最强编辑器安装Python运行环境 (雾 首先安装Python2和Python3,如果只需要用到一个的话,直接安装即可运行,不存在转换问题. 安装Python扩展,直接搜索安装即可. 更改 ...
 - Kubernetes学习之k8s
			
k8s是什么 云原生 越来越多的开发者不仅使用容器作为应用部署和运行的载体,还积极使用了与容器这个应用载体天生匹配的微服务的架构,并依靠容器调度编排引擎的帮助,以保持对外部的敏捷性,这种容器化的微服务 ...
 - [Algorithm] 面试题之犄角旮旯 第贰章
			
闲下来后,需要讲最近涉及到的算法全部整理一下,有个indice,方便记忆宫殿的查找 MIT的算法课,地球上最好: Design and Analysis of Algorithms 本篇需要重新整理, ...
 - 【linux】【jenkins】自动化运维三 整合gitlab、docker发布vue项目
			
由于工作需要,这里我先创建一个vue的工程. 1.首先安装好gitlab相关插件:GitLab.GitLab Hook.NodeJS 插件安装参考:https://www.cnblogs.com/jx ...
 - 基于Spark的电影推荐系统(实战简介)
			
写在前面 一直不知道这个专栏该如何开始写,思来想去,还是暂时把自己对这个项目的一些想法 和大家分享 的形式来展现.有什么问题,欢迎大家一起留言讨论. 这个项目的源代码是在https://github. ...
 - JAVA线程通信之生产者与消费者
			
package cn.test.hf.test3; import java.util.concurrent.locks.Condition;import java.util.concurrent.lo ...
 - 读《深入理解Elasticsearch》点滴-对象类型、嵌套文档、父子关系
			
一.对象类型 1.mapping定义文件 "title":{ "type":"text" }, "edition":{ ...
 - 读《深入理解Elasticsearch》点滴-multi_match
			
区分按字段为中心的查询.词条为中心的查询 注意高频词项被高得分词项(冷僻的词项)取代的问题 1.best_fields :适用于多字段查询且查询相同文本:得分取其中一个字段的最高分.可通过tie_br ...
 - Hibernate 中setResultTransformer使用
			
在使用hibernate框架,查询数据库多张表或者单张表的某几个需要的字段数据时,往往只能通过sql语句配合setResultTransformer将查询到的数据封装到一个map集合中,再将map集合 ...
 - c3p0配置记录
			
官方文档 : http://www.mchange.com/projects/c3p0/index.html <!--当连接池中的连接耗尽的时候c3p0一次同时获取的连接数.Default: 3 ...