普里姆算法(Prim)邻接矩阵法
算法代码
C#代码
using System;
namespace Prim
{
class Program
{
static void Main(string[] args)
{
int numberOfVertexes = 9,
infinity = int.MaxValue;
int[][] graph = new int[][] {
new int[]{0, 10, infinity, infinity, infinity, 11, infinity, infinity, infinity },
new int[]{ 10, 0, 18, infinity, infinity, infinity, 16, infinity, 12 },
new int[]{ infinity, 18, 0, 22, infinity, infinity, infinity, infinity, 8 },
new int[]{ infinity, infinity, 22, 0, 20, infinity, 24, 16, 21 },
new int[]{ infinity, infinity, infinity, 20, 0, 26, infinity, 7, infinity },
new int[]{ 11, infinity, infinity, infinity, 26, 0, 17, infinity, infinity },
new int[]{ infinity, 16, infinity, 24, infinity, 17, 0, 19, infinity },
new int[]{ infinity, infinity, infinity, 16, 7, infinity, 19, 0, infinity },
new int[]{ infinity, 12, 8, 21, infinity, infinity, infinity, infinity, 0 },
};
//Prim(graph, numberOfVertexes);
PrimSimplified(graph, numberOfVertexes);
}
static void Prim(int[][] graph, int numberOfVertexes)
{
bool debug = true;
int[] adjVex = new int[numberOfVertexes], // 邻接顶点数组:搜索边的最小权值过程中各边的起点坐标
lowCost = new int[numberOfVertexes]; // 各边权值数组:搜索边的最小权值过程中各边的权值,数组下标为边的终点。
for (int i = 0; i < numberOfVertexes; i++) // 从图G的下标为0的顶点开始搜索。(也是图G的最小生成树的顶点集合)。
{
adjVex[i] = 0;
}
for (int i = 0; i < numberOfVertexes; i++) // 初始从下标为0的顶点开始到下标为i的顶点的边的权值去搜索。找lowCost中权值最小的下标i。
{
lowCost[i] = graph[0][i];
}
int k = 0; // 初始假定权值最小的边的终点的下标为k。
for (int i = 1; i < numberOfVertexes; i++)
{
if (debug)
{
Console.WriteLine($"Loop {i}");
Console.Write("lowCost: ");
PrintArray(lowCost);
Console.Write(" adjVex: ");
PrintArray(adjVex);
Console.WriteLine();
}
int minimumWeight = int.MaxValue; // 搜索过程中发现到的最小的权值。初始设置为最大的整数值以示两点间无边。
for (int j = 1; j < numberOfVertexes; j++)
{
if (lowCost[j] != 0 && lowCost[j] < minimumWeight) // lowCost中0表示该点已经搜索过了。lowCost[j] < minimumWeight即发现目前最小权值。
{
minimumWeight = lowCost[j]; // 发现目前最小权值。
k = j; // 目前最小权值的边的终点下标。
}
}
if (!debug)
{
Console.WriteLine($"({adjVex[k]}, {k})"); // 输出边
}
adjVex[i] = k; // 此时找到的k值即是权值最小的边的终点。将V[k]放入集合U。(这步可省略,因lowCost[j]已被标为“无需搜索”了)。
lowCost[k] = 0; // 0表示该点已经搜索过了,已不需要再被搜索了。
for (int j = 1; j < numberOfVertexes; j++) // 转到以V[k]为开始顶点的边,去与前面u为起始顶点到V[i]为终止顶点的边的权值去比较。
{
if (lowCost[j] != 0 && graph[k][j] < lowCost[j]) // lowCost中0表示该点已经搜索过了。graph[k][j] < lowCost[j]即发现更小权值。
{
lowCost[j] = graph[k][j]; // 更新权值;索引j即终点下标。
adjVex[j] = k; // 下次寻找权值小的边时,从k为下标的顶点为起点。
}
}
if (debug)
{
Console.Write("lowCost: ");
PrintArray(lowCost);
Console.Write(" adjVex: ");
PrintArray(adjVex);
Console.WriteLine();
}
}
}
static void PrimSimplified(int[][] graph, int numberOfVertexes)
{
int[] adjVex = new int[numberOfVertexes], // 邻接顶点数组:搜索边的最小权值过程中各边的起点坐标
lowCost = new int[numberOfVertexes]; // 各边权值数组:搜索边的最小权值过程中各边的权值,数组下标为边的终点。
for (int i = 0; i < numberOfVertexes; i++)
{
adjVex[i] = 0; // 从图G的下标为0的顶点开始搜索。(也是图G的最小生成树的顶点集合)。
lowCost[i] = graph[0][i]; // 初始从下标为0的顶点开始到下标为i的顶点的边的权值去搜索。找lowCost中权值最小的下标i。
}
int k = 0; // 初始假定权值最小的边的终点的下标为k。
for (int i = 1; i < numberOfVertexes; i++)
{
int minimumWeight = int.MaxValue; // 搜索过程中发现到的最小的权值。初始设置为最大的整数值以示两点间无边。
for (int j = 1; j < numberOfVertexes; j++)
{
if (lowCost[j] != 0 && lowCost[j] < minimumWeight) // lowCost中0表示该点已经搜索过了。lowCost[j] < minimumWeight即发现目前最小权值。
{
minimumWeight = lowCost[j]; // 发现目前最小权值。
k = j; // 目前最小权值的边的终点下标。
}
}
Console.WriteLine($"({adjVex[k]}, {k})"); // 输出边
lowCost[k] = 0; // 0表示该点已经搜索过了,已不需要再被搜索了。
for (int j = 1; j < numberOfVertexes; j++) // 转到以V[k]为开始顶点的边,去与前面u为起始顶点到V[i]为终止顶点的边的权值去比较。
{
if (lowCost[j] != 0 && graph[k][j] < lowCost[j]) // lowCost中0表示该点已经搜索过了。graph[k][j] < lowCost[j]即发现更小权值。
{
lowCost[j] = graph[k][j]; // 更新权值;索引j即终点下标。
adjVex[j] = k; // 下次寻找权值小的边时,从k为下标的顶点为起点。
}
}
}
}
static void PrintArray(int[] array)
{
Console.Write("[ ");
for (int i = 0; i < array.Length - 1; i++) // 输出数组的前面n-1个
{
Console.Write($"{ToInfinity(array[i])}, ");
}
if (array.Length > 0) // 输出数组的最后1个
{
int n = array.Length - 1;
Console.Write($"{ToInfinity(array[n])}");
}
Console.WriteLine(" ]");
}
static string ToInfinity(int i) => i == int.MaxValue ? "∞" : i.ToString();
}
}
TypeScript代码
function prim(graph: number[][], numberOfVertexes: number) {
let debug: boolean = true;
let adjVex: number[] = [], // 邻接顶点数组:搜索边的最小权值过程中各边的起点坐标
lowCost = []; // 各边权值数组:搜索边的最小权值过程中各边的权值,数组下标为边的终点。
for (let i = 0; i < numberOfVertexes; i++) // 从图G的下标为0的顶点开始搜索。(也是图G的最小生成树的顶点集合)。
{
adjVex[i] = 0;
}
for (let i = 0; i < numberOfVertexes; i++) // 初始从下标为0的顶点开始到下标为i的顶点的边的权值去搜索。找lowCost中权值最小的下标i。
{
lowCost[i] = graph[0][i];
}
let k: number = 0; // 初始假定权值最小的边的终点的下标为k。
for (let i = 1; i < numberOfVertexes; i++) {
if (debug) {
console.log(`Loop ${i}`);
console.log(`lowCost: ${printArray(lowCost)}`);
console.log(` adjVex: ${printArray(adjVex)}`);
}
// 搜索过程中发现到的最小的权值。初始设置为最大的整数值以示两点间无边。
let minimumWeight: number = Number.MAX_VALUE;
for (let j = 1; j < numberOfVertexes; j++) {
// lowCost中0表示该点已经搜索过了。lowCost[j] < minimumWeight即发现目前最小权值。
if (lowCost[j] != 0 && lowCost[j] < minimumWeight)
{
minimumWeight = lowCost[j]; // 发现目前最小权值。
k = j; // 目前最小权值的边的终点下标。
}
}
if (!debug) {
console.log(`(${adjVex[k]}, ${k})`);// 输出边
}
adjVex[i] = k; // 此时找到的k值即是权值最小的边的终点。将V[k]放入集合U。(这步可省略,因lowCost[j]已被标为“无需搜索”了)。
lowCost[k] = 0; // 0表示该点已经搜索过了,已不需要再被搜索了。
// 转到以V[k]为开始顶点的边,去与前面u为起始顶点到V[i]为终止顶点的边的权值去比较。
for (let j = 1; j < numberOfVertexes; j++)
{
// lowCost中0表示该点已经搜索过了。graph[k][j] < lowCost[j]即发现更小权值。
if (lowCost[j] != 0 && graph[k][j] < lowCost[j])
{
lowCost[j] = graph[k][j]; // 更新权值;索引j即终点下标。
adjVex[j] = k; // 下次寻找权值小的边时,从k为下标的顶点为起点。
}
}
if (debug) {
console.log(`lowCost: ${printArray(lowCost)}`);
console.log(` adjVex: ${printArray(adjVex)}`);
console.log('');
}
}
}
function primSimplified(graph: number[][], numberOfVertexes: number) {
let adjVex: number[] = [], // 邻接顶点数组:搜索边的最小权值过程中各边的起点坐标
lowCost = []; // 各边权值数组:搜索边的最小权值过程中各边的权值,数组下标为边的终点。
for (let i = 0; i < numberOfVertexes; i++) {
adjVex[i] = 0; // 从图G的下标为0的顶点开始搜索。(也是图G的最小生成树的顶点集合)。
lowCost[i] = graph[0][i]; // 初始从下标为0的顶点开始到下标为i的顶点的边的权值去搜索。找lowCost中权值最小的下标i。
}
let k: number = 0; // 初始假定权值最小的边的终点的下标为k。
for (let i = 1; i < numberOfVertexes; i++) {
// 搜索过程中发现到的最小的权值。初始设置为最大的整数值以示两点间无边。
let minimumWeight: number = Number.MAX_VALUE;
for (let j = 1; j < numberOfVertexes; j++) {
// lowCost中0表示该点已经搜索过了。lowCost[j] < minimumWeight即发现目前最小权值。
if (lowCost[j] != 0 && lowCost[j] < minimumWeight)
{
minimumWeight = lowCost[j]; // 发现目前最小权值。
k = j; // 目前最小权值的边的终点下标。
}
}
console.log(`(${adjVex[k]}, ${k})`); // 输出边
lowCost[k] = 0; // 0表示该点已经搜索过了,已不需要再被搜索了。
// 转到以V[k]为开始顶点的边,去与前面u为起始顶点到V[i]为终止顶点的边的权值去比较。
for (let j = 1; j < numberOfVertexes; j++)
{
// lowCost中0表示该点已经搜索过了。graph[k][j] < lowCost[j]即发现更小权值。
if (lowCost[j] != 0 && graph[k][j] < lowCost[j])
{
lowCost[j] = graph[k][j]; // 更新权值;索引j即终点下标。
adjVex[j] = k; // 下次寻找权值小的边时,从k为下标的顶点为起点。
}
}
}
}
function printArray(array: number[]): string {
let str: string[] = [];
str.push("[ ");
for (let i = 0; i < array.length - 1; i++) // 输出数组的前面n-1个
{
str.push(`${toInfinity(array[i])}, `)
}
if (array.length > 0) // 输出数组的最后1个
{
let n: number = array.length - 1;
str.push(`${toInfinity(array[n])}`);
}
str.push(" ]");
return str.join("");
}
function toInfinity(i: number) {
return i == Number.MAX_VALUE ? "∞" : i.toString();
}
function Main() {
let numberOfVertexes: number = 9,
infinity = Number.MAX_VALUE;
let graph: number[][] = [
[0, 10, infinity, infinity, infinity, 11, infinity, infinity, infinity],
[10, 0, 18, infinity, infinity, infinity, 16, infinity, 12],
[infinity, 18, 0, 22, infinity, infinity, infinity, infinity, 8],
[infinity, infinity, 22, 0, 20, infinity, 24, 16, 21],
[infinity, infinity, infinity, 20, 0, 26, infinity, 7, infinity],
[11, infinity, infinity, infinity, 26, 0, 17, infinity, infinity],
[infinity, 16, infinity, 24, infinity, 17, 0, 19, infinity],
[infinity, infinity, infinity, 16, 7, infinity, 19, 0, infinity],
[infinity, 12, 8, 21, infinity, infinity, infinity, infinity, 0],
];
prim(graph, numberOfVertexes);
primSimplified(graph, numberOfVertexes);
}
Main();
参考资料:
《大话数据结构》 - 程杰 著 - 清华大学出版社 第247页
普里姆算法(Prim)邻接矩阵法的更多相关文章
- 最小生成树练习3(普里姆算法Prim)
风萧萧兮易水寒,壮士要去敲代码.本女子开学后再敲了.. poj1258 Agri-Net(最小生成树)水题. #include<cstdio> #include<cstring> ...
- 普里姆算法(Prim)
概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图(带权图)里搜索最小生成树.即此算法搜索到的边(Edge)子集所构成的树中,不但包括了连通图里的所有顶点(Vertex)且其所有边的权 ...
- 普里姆(Prim)算法
概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图(即"带权图")里搜索最小生成树.即此算法搜索到的边(Edge)子集所构成的树中,不但包括了连通图里的所有顶点(V ...
- 查找最小生成树:普里姆算法算法(Prim)算法
一.算法介绍 普里姆算法(Prim's algorithm),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点,且其所有边的权值之 ...
- HDU 1879 继续畅通工程 (Prim(普里姆算法)+Kruskal(克鲁斯卡尔))
继续畅通工程 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...
- hdu 1233:还是畅通工程(数据结构,图,最小生成树,普里姆(Prim)算法)
还是畅通工程 Time Limit : 4000/2000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other) Total Submis ...
- 最小生成树---普里姆算法(Prim算法)和克鲁斯卡尔算法(Kruskal算法)
普里姆算法(Prim算法) #include<bits/stdc++.h> using namespace std; #define MAXVEX 100 #define INF 6553 ...
- ACM第四站————最小生成树(普里姆算法)
对于一个带权的无向连通图,其每个生成树所有边上的权值之和可能不同,我们把所有边上权值之和最小的生成树称为图的最小生成树. 普里姆算法是以其中某一顶点为起点,逐步寻找各个顶点上最小权值的边来构建最小生成 ...
- 图->连通性->最小生成树(普里姆算法)
文字描述 用连通网来表示n个城市及n个城市间可能设置的通信线路,其中网的顶点表示城市,边表示两城市之间的线路,赋于边的权值表示相应的代价.对于n个定点的连通网可以建立许多不同的生成树,每一棵生成树都可 ...
随机推荐
- 在Ubuntu上安装TensorFlow-GPU开发环境
深度学习是一个比较复杂的体系,今天记录一下开发环境的搭建步骤. 全新安装Ubuntu 20.10,系统默认安装的是python3,查看python的版本: mango@ubuntu:~$ python ...
- 比Django官方实现更好的分页组件+Bootstrap整合
前言 Django全家桶自带的分页组件只能说能满足分页这个功能,但是没那么好用就是了 Django的分页效果 django-pure-pagination分页效果 使用方法 首先安装: pip ins ...
- java例题_32 取一个整数a从右端开始的4~7位
1 /*32 [程序 32 左移右移] 2 题目:取一个整数 a 从右端开始的 4-7 位. 3 */ 4 5 /*分析 6 * 从右端开始的第四位相当于原数除以1000后结果的最后一位数, 7 * ...
- 【DB宝47】企业知识分享+团队协作神器之Confluence
目录 一.Confluence简介 二.知识库软件对比 三.快速安装confluence 7.4.6版本 四.confluence基本操作简介 4.1.创建空间(Space) 4.2.配置空间权限 4 ...
- IDEA 主题下载
IDEA中主题可以更换,大家可以直接到 http://www.riaway.com/ 网站或 http://color-themes.com/?view=index 网站,直接下载自己喜欢的主题. ...
- 201871030119-马桂婷 实验三 结对项目—《D{0-1}KP 实例数据集算法实验平台》项目报告
项目 内容 课程班级博客 2018卓越工程师班 这个作业要求链接 实验三 软件工程结对项目 我的课程学习目标 1.体验软件项目开发中的两人合作,练习结对编程:2.掌握Github协作开发程序的操作方法 ...
- LeetCode剑指Offer刷题总结(一)
LeetCode过程中值得反思的细节 以下题号均指LeetCode剑指offer题库中的题号 本文章将每周定期更新,当内容达到10题左右时将会开下一节. 二维数组越界问题04 public stati ...
- Day16_97_IO_FileOutputStream 写入字节流
FileOutputStream 写入字节流 * java.io.OutPutStream -----> java.io.FileOutputStream 将计算机内存中的数据写于磁盘中. * ...
- Day11_50_SortedMap集合
SortedMap集合 二叉查找树 和 二叉*衡树 二叉查找树是一种有序的树,所有的左孩子的value值都是小于叶子结点的value值的,所有右孩子的value值都是大于叶子结点的.这样做的好处在于: ...
- python 函数对象、函数嵌套、名称空间与作用域
一 函数对象 一 函数是第一类对象,即函数可以当作数据传递 #1 可以被引用 #2 可以当作参数传递 #3 返回值可以是函数 #3 可以当作容器类型的元素二 利用该特性,优雅的取代多分支的if def ...