> 目  录 

 > 笔  记 

Dynamic programming(DP)

定义:a collection of algorithms that can be used to compute optimal policies given a perfect model of the environment as a Markov decision process (MDP).

经典的DP算法处理RL problem的能力有限的原因:(1) 假设a perfect model with complete knowledge;(2) 巨大的计算开销

Policy Evaluation (Prediction)

policy evaluation: the iterative computation of the state-value function $v_{\pi}$ for a given policy $\pi$.

用迭代=的方法实现评估: 旧的value = expected immediate rewards + 从后继states获得的values

这种更新操作叫做expected update,因为它基于所有可能的后继states的期望,而非单个next state sample。

存储方式:有two-array version(同时存储old和new value) 和 in-place algorithm(只存储new value)两种,通常采用后者,收敛的更快。

Policy Improvement

我们计算policy的价值函数的目的是希望能够帮助我们找到更好的policy。

Policy improvement theorem:

两个确定的策略$\pi$和$\pi'$,如果满足:

那么策略$\pi'$一定比$\pi$好or跟它一样好。因此,策略$\pi'$可以在所有state上得到更多or相等的expected return:

证明如下:

Policy improvement:

定义: Policy improvement refers to the computation of an improved policy given the value function for that policy.

相比原始策略$\pi$,如果我们在所有states上采用贪心算法来选择action,那么得到的新策略如下:

因为其满足policy improvement theorem的条件,所以新的greedy policy $\pi'$要比old policy更好。我们可以根据这一性质,不断地对policy进行改进,直到new policy和old policy一样好,即$v_{\pi}=v_{\pi'}$,此时对所有的states满足:

该式子正是Bellman optimality equation,因此$v_{\pi'}$一定是$\v_{*}$, 策略$\pi$和$\pi‘’$一定是最优策略。

Policy Iteration

定义: 一种把policy evaluation和policy improvement结合在一起的常见的DP方法。

因为finite MDP只有有限数量的策略,因此最终总会在有限步数内收敛到一个optimal policy和optimal value function。

Value Iteration

policy iteration的缺点:每一轮迭代都需要执行policy evaluation,而policy evaluation需要对state set扫描多次并且$\v_{\pi}$最终很久才能收敛。

改进方法:可否让policy evaluation早一些停止?value iteration不再等policy evaluation收敛,而是只对所有state扫描一次就停止。将policy evaluation和policy improvement的步骤同时进行:

Asynchronous Dynamic Programming

之前讨论的DP方法的缺点在于:需要对MDP中所有states进行扫描、操作,导致效率低下。

Asynchronous DP algorithms: 是in-place iterative DP algorithms,这类算法可以按照任意顺序更新state的value,并且不管其他states当前的value是何时更新的。

需要注意的是,avoiding state sweeps并不意味着我们可以减少计算量,其好处是(1) 可以让我们尽快利用更新后的value来提升policy,并且减少更新那些无用的states。(2)可以实时计算,所以可以实现iterative DP algorithm  at the same time that agent is actually experiencing the MDP。agent经历可以用于决定更新那些states。

Generalized Policy Iteration

generalized policy iteration (GPI):policy-evaluation and policy-improvement processes interaction

                 

Reinforcement Learning: An Introduction读书笔记(4)--动态规划的更多相关文章

  1. Reinforcement Learning: An Introduction读书笔记(3)--finite MDPs

     > 目  录 <  Agent–Environment Interface Goals and Rewards Returns and Episodes Policies and Val ...

  2. Reinforcement Learning: An Introduction读书笔记(1)--Introduction

      > 目  录 <   learning & intelligence 的基本思想 RL的定义.特点.四要素 与其他learning methods.evolutionary m ...

  3. Reinforcement Learning: An Introduction读书笔记(2)--多臂机

     > 目  录 <  k-armed bandit problem Incremental Implementation Tracking a Nonstationary Problem ...

  4. 《Machine Learning Yearing》读书笔记

    ——深度学习的建模.调参思路整合. 写在前面 最近偶尔从师兄那里获取到了吴恩达教授的新书<Machine Learning Yearing>(手稿),该书主要分享了神经网络建模.训练.调节 ...

  5. Machine Learning for hackers读书笔记(六)正则化:文本回归

    data<-'F:\\learning\\ML_for_Hackers\\ML_for_Hackers-master\\06-Regularization\\data\\' ranks < ...

  6. 《算法导论》读书笔记之动态规划—最长公共子序列 & 最长公共子串(LCS)

    From:http://my.oschina.net/leejun2005/blog/117167 1.先科普下最长公共子序列 & 最长公共子串的区别: 找两个字符串的最长公共子串,这个子串要 ...

  7. Machine Learning for hackers读书笔记(三)分类:垃圾邮件过滤

    #定义函数,打开每一个文件,找到空行,将空行后的文本返回为一个字符串向量,该向量只有一个元素,就是空行之后的所有文本拼接之后的字符串 #很多邮件都包含了非ASCII字符,因此设为latin1就可以读取 ...

  8. Machine Learning for hackers读书笔记_一句很重要的话

    为了培养一个机器学习领域专家那样的直觉,最好的办法就是,对你遇到的每一个机器学习问题,把所有的算法试个遍,直到有一天,你凭直觉就知道某些算法行不通.

  9. Machine Learning for hackers读书笔记(十二)模型比较

    library('ggplot2')df <- read.csv('G:\\dataguru\\ML_for_Hackers\\ML_for_Hackers-master\\12-Model_C ...

随机推荐

  1. [转] 如何用kaldi训练好的模型做特定任务的在线识别

    转自:http://blog.csdn.net/inger_h/article/details/52789339 在已经训练好模型的情况下,需要针对一个新任务做在线识别应该怎么做呢? 一种情况是,用已 ...

  2. 感悟优化——Netty对JDK缓冲区的内存池零拷贝改造

    NIO中缓冲区是数据传输的基础,JDK通过ByteBuffer实现,Netty框架中并未采用JDK原生的ByteBuffer,而是构造了ByteBuf. ByteBuf对ByteBuffer做了大量的 ...

  3. Java开发瓶颈,Dubbo架构学习整理

    作者:butterfly100 一. Dubbo诞生背景 随着互联网的发展和网站规模的扩大,系统架构也从单点的垂直结构往分布式服务架构演进,如下图所示: 单一应用架构:一个应用部署所有功能,此时简化C ...

  4. Web前端-Vue.js必备框架(一)

    Web前端-Vue.js必备框架(一) <!DOCTYPE html> <html lang="en"> <head> <meta cha ...

  5. 第68节:Java中的MYSQL运用从小白到大牛

    第68节:Java中的MYSQL运用从小白到大牛 前言 学习java必备要求,学会运用!!! 常见关系化数据库 BootStrap是轻量级开发响应式页面的框架,全局css组件,js插件.栅格系统是将页 ...

  6. 第45节:Java当中的变量,面向对象

    Java当中的变量 01 Java当中的实例变量和类变量 什么是实例变量和类变量呢? 实例变量为没有用static修饰符修饰的变量,而类变量为用static修饰符修饰的变量. public class ...

  7. linux 下zip的用法实例

    zip命令可以用来将文件压缩成为常用的zip格式.unzip命令则用来解压缩zip文件. 1. 我想把一个文件abc.txt和一个目录dir1压缩成为yasuo.zip: # zip -r yasuo ...

  8. 带你一文了解Python中的运算符

    运算符 目标 算数运算符 比较(关系)运算符 逻辑运算符 赋值运算符 运算符的优先级 数学符号表链接:https://zh.wikipedia.org/wiki/数学符号表 01. 算数运算符 是完成 ...

  9. VS解决-无法打开文件“opencv_ts300d.lib”问题

    之前使用过opencv,但不想要时没有正确去卸载,终造成历史问题,每次新建工程编译时都会弹出错误,然后停止运行,解决方法较笨笨 成功打印

  10. ASP.NET Core微服务+Tabler前端框架搭建个人博客1--开始前想说的话

    写在前面 本人为在读研究生,特别喜欢.NET,觉得.NET的编程方式.语法都特别友好,学习.NET Core已经差不多有一年半了,从一开始不知道如何入门到现在终于可以编写一些小的应用程序,想一想还是非 ...