【洛谷P3917】异或序列
题目大意:给定一个长度为 N 的序列,每个位置有一个权值,求 $$\sum\limits_{1\le i\le j\le n}(a_i\oplus a_{i+1}...\oplus a_j)$$ 的值。
题解:
解法1:从整体考虑。
先预处理出序列的前缀异或和。根据和式的性质可知,对于任意两个点 i,j 的组合均会计入答案贡献,而异或值为 1 才会对答案产生贡献。因此,统计出对于32位中的每一位来说,前缀和序列中该位为 1 的个数。最后根据组合计数原理,每一位对答案的贡献为该位 1 的个数乘以该位 0 的个数乘以对应的 2 的幂即可。
代码如下
#include <bits/stdc++.h>
#define fi first
#define se second
#define pb push_back
#define mp make_pair
#define all(x) x.begin(),x.end()
#define cls(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long ll;
typedef pair<int,int> P;
const int dx[]={0,1,0,-1};
const int dy[]={1,0,-1,0};
const int mod=1e9+7;
const int inf=0x3f3f3f3f;
const int maxn=1e5+10;
const double eps=1e-6;
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll sqr(ll x){return x*x;}
inline ll fpow(ll a,ll b,ll c){ll ret=1%c;for(;b;b>>=1,a=a*a%c)if(b&1)ret=ret*a%c;return ret;}
inline ll read(){
ll x=0,f=1;char ch;
do{ch=getchar();if(ch=='-')f=-1;}while(!isdigit(ch));
do{x=x*10+ch-'0';ch=getchar();}while(isdigit(ch));
return f*x;
}
/*------------------------------------------------------------*/
int n,a[maxn];
ll cnt[30];
void read_and_parse(){
n=read();
for(int i=1;i<=n;i++)a[i]=read()^a[i-1];
}
void solve(){
for(int i=1;i<=n;i++)
for(int j=0;j<30;j++)
if(a[i]>>j&1)++cnt[j];
ll ans=0;
for(int i=0;i<30;i++)ans+=cnt[i]*(n+1-cnt[i])*(1LL<<i);
printf("%lld\n",ans);
}
int main(){
read_and_parse();
solve();
return 0;
}
解法2:将问题划分为若干子问题。
代码如下
#include <bits/stdc++.h>
#define fi first
#define se second
#define pb push_back
#define mp make_pair
#define all(x) x.begin(),x.end()
#define cls(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long ll;
typedef pair<int,int> P;
const int dx[]={0,1,0,-1};
const int dy[]={1,0,-1,0};
const int mod=1e9+7;
const int inf=0x3f3f3f3f;
const int maxn=1e5+10;
const double eps=1e-6;
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll sqr(ll x){return x*x;}
inline ll fpow(ll a,ll b,ll c){ll ret=1%c;for(;b;b>>=1,a=a*a%c)if(b&1)ret=ret*a%c;return ret;}
inline ll read(){
ll x=0,f=1;char ch;
do{ch=getchar();if(ch=='-')f=-1;}while(!isdigit(ch));
do{x=x*10+ch-'0';ch=getchar();}while(isdigit(ch));
return f*x;
}
/*------------------------------------------------------------*/
int n,a[maxn];
ll ans;
void read_and_parse(){
n=read();
for(int i=1;i<=n;i++)a[i]=read();
}
void solve(){
for(int i=0;i<30;i++){
ll sum=0,now=0;
for(int j=1;j<=n;j++){
if(a[j]>>i&1)now=j-now;
sum+=now;
}
ans+=(ll)sum*(1<<i);
}
printf("%lld\n",ans);
}
int main(){
read_and_parse();
solve();
return 0;
}
【洛谷P3917】异或序列的更多相关文章
- P3917 异或序列
P3917 异或序列暴力前缀异或枚举每一个区间,再求和,60分.正解:按每一位来做对于区间[l,r],如果它对答案有贡献,区间中1的个数一定是奇数,可以按每一位取(1<<i)的前缀和,q[ ...
- 洛谷 2023 [AHOI2009]维护序列
洛谷 2023 [AHOI2009]维护序列 洛谷原题传送门 这个题也是一道经典的线段树模版(其实洛谷的模版二改一下输入顺序就能AC),其中包括区间乘法修改.区间加法修改.区间查询三个操作. 线段树的 ...
- 洛谷 P3908 异或之和
洛谷 P3908 异或之和 题目描述 求1⨁2⨁⋯⨁N 的值. A⨁B 即 AA, B 按位异或. 输入输出格式 输入格式: 1 个整数 N . 输出格式: 1 个整数,表示所求的值. 输入输出样例 ...
- 洛谷P2023 [AHOI2009]维护序列(线段树区间更新,区间查询)
洛谷P2023 [AHOI2009]维护序列 区间修改 当我们要修改一个区间时,要保证 \(ax+b\) 的形式,即先乘后加的形式.当将区间乘以一个数 \(k\) 时,原来的区间和为 \(ax+b\) ...
- 洛谷 P4093 [HEOI2016/TJOI2016]序列 CDQ分治优化DP
洛谷 P4093 [HEOI2016/TJOI2016]序列 CDQ分治优化DP 题目描述 佳媛姐姐过生日的时候,她的小伙伴从某宝上买了一个有趣的玩具送给他. 玩具上有一个数列,数列中某些项的值可能会 ...
- [洛谷P2023] [AHOI2009]维护序列
洛谷题目链接:[AHOI2009]维护序列 题目描述 老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成. 有长为N的数列,不妨设为a1,a2,-,aN .有如下三种操作形式: (1)把数列 ...
- BZOJ4553/洛谷P4093 [HEOI2016/TJOI2016]序列 动态规划 分治
原文链接http://www.cnblogs.com/zhouzhendong/p/8672434.html 题目传送门 - BZOJ4553 题目传送门 - 洛谷P4093 题解 设$Li$表示第$ ...
- 【题解】洛谷P2023 [AHOI2009] 维护序列(线段树)
洛谷P2023:https://www.luogu.org/problemnew/show/P2023 思路 需要2个Lazy-Tag 一个表示加的 一个表示乘的 需要先计算乘法 再计算加法 来自你谷 ...
- 【洛谷3321_BZOJ3992】[SDOI2015]序列统计(原根_多项式)
题目: 洛谷3321 分析: 一个转化思路比较神(典型?)的题-- 一个比较显然的\(O(n^3)\)暴力是用\(f[i][j]\)表示选了\(i\)个数,当前积在模\(m\)意义下为\(j\)的方案 ...
随机推荐
- JS --- 如何获取一个对象的类型
可以清楚的看到 拿到数字 字符串 对象 函数 数组 通过.slice(8,-1) 可以拿到类型的名称 ,可以做你想要的操作 Object.prototype.toString.call(222) & ...
- python爬虫scrapy之downloader_middleware设置proxy代理
一.背景: 小编在爬虫的时候肯定会遇到被封杀的情况,昨天爬了一个网站,刚开始是可以了,在settings的设置DEFAULT_REQUEST_HEADERS伪装自己是chrome浏览器,刚开始是可以的 ...
- mktemp -t -d用法
mktemp命令用于建立暂存文件或者文件夹,帮助文档如下: Usage: mktemp [OPTION]... [TEMPLATE] Create a temporary file or direct ...
- 转 利用java反射实现两个具有相同属性bean赋值
package com.dobn.bdgcgl.utils; import java.lang.reflect.Field; import java.lang.reflect.Method; publ ...
- Spring Boot 构建电商基础秒杀项目 (三) 通用的返回对象 & 异常处理
SpringBoot构建电商基础秒杀项目 学习笔记 定义通用的返回对象 public class CommonReturnType { // success, fail private String ...
- U68464 滑稽树上滑稽果(guo)
U68464 滑稽树上滑稽果(guo) 题目描述 小小迪有 n 个约会对象,每个对象有一个约会时长 p[i],小小迪 想尽可能多的去完成他的约会(假设小小迪可以瞬移),每个对象还有 一个忍耐时间 q[ ...
- codevs2822
解题思路: tarjan缩点后算出度为0的点有几个,如果只有一个且这个点为爱心天使就行了: #include<iostream> #include<algorithm> #in ...
- 使用Google ZXing生成和解析二维码
pom.xml <?xml version="1.0" encoding="UTF-8"?> <project xmlns="htt ...
- Spring Boot2.0自定义配置文件使用
声明: spring boot 1.5 以后,ConfigurationProperties取消locations属性,因此采用PropertySource注解配合使用 根据Spring Boot2. ...
- Django ORM模型
Object Relational Mapping(ORM) 一,ORM介绍 1, ORM概念 对象关系映射(Object Relational Mapping,简称ORM)模式是一种为了解决面向对象 ...