bzoj 2733 : [HNOI2012]永无乡 (线段树合并)
Description
永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示。某些岛之间由巨大的桥连接,通过桥可以从一个岛 到达另一个岛。如果从岛 a 出发经过若干座(含 0 座)桥可以到达岛 b,则称岛 a 和岛 b 是连 通的。现在有两种操作:B x y 表示在岛 x 与岛 y 之间修建一座新桥。Q x k 表示询问当前与岛 x连通的所有岛中第 k 重要的是哪座岛,即所有与岛 x 连通的岛中重要度排名第 k 小的岛是哪 座,请你输出那个岛的编号。
Input
输入文件第一行是用空格隔开的两个正整数 n 和 m,分别 表示岛的个数以及一开始存在的桥数。接下来的一行是用空格隔开的 n 个数,依次描述从岛 1 到岛 n 的重要度排名。随后的 m 行每行是用空格隔开的两个正整数 ai 和 bi,表示一开始就存 在一座连接岛 ai 和岛 bi 的桥。后面剩下的部分描述操作,该部分的第一行是一个正整数 q, 表示一共有 q 个操作,接下来的 q 行依次描述每个操作,操作的格式如上所述,以大写字母 Q 或B 开始,后面跟两个不超过 n 的正整数,字母与数字以及两个数字之间用空格隔开。 对于 20%的数据 n≤1000,q≤1000
对于 100%的数据 n≤100000,m≤n,q≤300000
Output
对于每个 Q x k 操作都要依次输出一行,其中包含一个整数,表 示所询问岛屿的编号。如果该岛屿不存在,则输出-1。
Sample Input
4 3 2 5 1
1 2
7
Q 3 2
Q 2 1
B 2 3
B 1 5
Q 2 1
Q 2 4
Q 2 3
Sample Output
2
5
1
2
#include<bits/stdc++.h>
using namespace std;
#define mid int m = (l + r) >> 1
const int M = 1e5 + ; int fa[M],a[M],pos[M],root[M];
int sum[M*],ls[M*],rs[M*],idx; int Find(int x){
if(fa[x] != x) fa[x] = Find(fa[x]);
return fa[x];
} void update(int p,int l,int r,int &rt){
if(!rt) rt = ++idx;
if(l == r){
sum[rt]++;
return ;
}
mid;
if(p <= m) update(p,l,m,ls[rt]);
else update(p,m+,r,rs[rt]);
sum[rt] = sum[ls[rt]] + sum[rs[rt]];
} int query(int p,int l,int r,int rt){
if(l == r) return l;
mid;
if(p <= sum[ls[rt]]) return query(p,l,m,ls[rt]);
else return query(p-sum[ls[rt]],m+,r,rs[rt]);
} int Merge(int x,int y){
if(!x) return y;
if(!y) return x;
ls[y] = Merge(ls[x],ls[y]);
rs[y] = Merge(rs[x],rs[y]);
sum[y] = sum[ls[y]] + sum[rs[y]];
return y;
} int main()
{
int n,m,q,x,y;
char op[];
scanf("%d%d",&n,&m);
for(int i = ;i <= n;i ++) fa[i] = i;
for(int i = ;i <= n;i ++) scanf("%d",&a[i]);
for(int i = ;i <= m;i ++){
scanf("%d%d",&x,&y);
int fx = Find(x),fy = Find(y);
fa[fx] = fy;
}
for(int i = ;i <= n;i ++){
update(a[i],,n,root[Find(i)]);
pos[a[i]] = i;
}
scanf("%d",&q);
while(q--){
scanf("%s",op);
scanf("%d%d",&x,&y);
if(op[] == 'Q'){
if(sum[root[Find(x)]] < y){
printf("%d\n",-);
continue;
}
int num = query(y,,n,root[Find(x)]);
printf("%d\n",pos[num]);
}
else{
int fx = Find(x),fy = Find(y);
if(x == y) continue;
fa[fx] = fy; root[fy] = Merge(root[fx],root[fy]);
}
}
return ;
}
bzoj 2733 : [HNOI2012]永无乡 (线段树合并)的更多相关文章
- bzoj 2733: [HNOI2012]永无乡 -- 线段树
2733: [HNOI2012]永无乡 Time Limit: 10 Sec Memory Limit: 128 MB Description 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自 ...
- Bzoj 2733: [HNOI2012]永无乡(线段树+启发式合并)
2733: [HNOI2012]永无乡 Time Limit: 10 Sec Memory Limit: 128 MB Description 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己 ...
- BZOJ 2733 [HNOI2012]永无乡 ——线段树 并查集
用并查集维护联通块. 用线段树的合并来合并联通块. 自己YY了一个写法. #include <map> #include <cmath> #include <queue& ...
- 2733: [HNOI2012]永无乡 线段树合并
题目: https://www.lydsy.com/JudgeOnline/problem.php?id=2733 题解: 建n棵动态开点的权值线段树,然后边用并查集维护连通性,边合并线段树维护第k重 ...
- BZOJ 2733: [HNOI2012]永无乡 [splay启发式合并]
2733: [HNOI2012]永无乡 题意:加边,询问一个连通块中k小值 终于写了一下splay启发式合并 本题直接splay上一个节点对应图上一个点就可以了 并查集维护连通性 合并的时候,把siz ...
- BZOJ 2733: [HNOI2012]永无乡(treap + 启发式合并 + 并查集)
不难...treap + 启发式合并 + 并查集 搞搞就行了 --------------------------------------------------------------------- ...
- [HNOI2012]永无乡 线段树合并
[HNOI2012]永无乡 LG传送门 线段树合并练手题,写这篇博客只是为了给我的这篇文章找个板子题. 并查集维护连通性,对于不在同一个连通块内的合并操作每次直接合并两颗线段树,复杂度\(O(n \l ...
- bzoj2733: [HNOI2012]永无乡 线段树合并
永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以从一个岛 到达另一个岛. ...
- BZOJ2733[HNOI2012]永无乡——线段树合并+并查集+启发式合并
题目描述 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以从一个岛 到达 ...
随机推荐
- Integer的NPE问题
- Python“Non-ASCII character 'xe5' in file”报错问题
今天在编译一个Python程序的时候,一直出现“Non-ASCII character 'xe5' in file”报错问题 SyntaxError: Non-ASCII character '\xe ...
- Redis客户端断开重连功能要点
Redis客户端: Java基于Jedis开发 C#基于StackExchange开发 C++基于acl开发 首先确保在主从模式下,客户端能分辨主从节点,自动连接正确的客户端,这样只要有一个节点可用, ...
- Java 读取配置文件数据
Properties类 Properties类,是一个工具类,包含在java.util包中. 功能:可以保存持久的属性,通常用来读取配置文件或者属性文件,将文件中的数据读入properties对象中, ...
- Centos下启动和关闭MySQL
https://blog.csdn.net/gghh2015/article/details/78281585
- 【转】实现Nginx代理WSS协议
https://blog.csdn.net/chopin407/article/details/52937645 后来看到了官网的教程(http://nginx.org/en/docs/http/we ...
- ios点击输入框,界面放大解决方案
当我们编写的input宽度没有占满屏幕宽度,而且又没有申明meta,就会出现点击输入框,界面放大这个问题. 下面我直接给出解决方案: <meta name="viewport" ...
- HTTL之初印象
概述 HTTL (Hyper-Text Template Language) 是一个高性能的开源JAVA模板引擎, 适用于动态HTML页面输出, 可替代JSP页面, 指令和Velocity相似. 简洁 ...
- 安装openssl
此方法安装原因: 由于我用是非企业版 redhat 没有注册 有很多的yum 不能安装 openssl是在其中. 开始安装: 1.虚拟机挂载ios 镜像文件 2.进入终端 cd /media/RH ...
- MongoDB操作(1)—MongoDB java驱动核心层次结构及操作流程
MongoDB之java驱动学习 预备: 本地运行MongoDB采用默认端口20717: 安装MongoDB驱动: 以下关键步骤. 核心层次结构或步骤: 创建连接池:MongoClient实例. 对于 ...