Description

永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示。某些岛之间由巨大的桥连接,通过桥可以从一个岛 到达另一个岛。如果从岛 a 出发经过若干座(含 0 座)桥可以到达岛 b,则称岛 a 和岛 b 是连 通的。现在有两种操作:B x y 表示在岛 x 与岛 y 之间修建一座新桥。Q x k 表示询问当前与岛 x连通的所有岛中第 k 重要的是哪座岛,即所有与岛 x 连通的岛中重要度排名第 k 小的岛是哪 座,请你输出那个岛的编号。

Input

输入文件第一行是用空格隔开的两个正整数 n 和 m,分别 表示岛的个数以及一开始存在的桥数。接下来的一行是用空格隔开的 n 个数,依次描述从岛 1 到岛 n 的重要度排名。随后的 m 行每行是用空格隔开的两个正整数 ai 和 bi,表示一开始就存 在一座连接岛 ai 和岛 bi 的桥。后面剩下的部分描述操作,该部分的第一行是一个正整数 q, 表示一共有 q 个操作,接下来的 q 行依次描述每个操作,操作的格式如上所述,以大写字母 Q 或B 开始,后面跟两个不超过 n 的正整数,字母与数字以及两个数字之间用空格隔开。 对于 20%的数据 n≤1000,q≤1000 
 
对于 100%的数据 n≤100000,m≤n,q≤300000

Output

对于每个 Q x k 操作都要依次输出一行,其中包含一个整数,表 示所询问岛屿的编号。如果该岛屿不存在,则输出-1。

Sample Input

5 1
4 3 2 5 1
1 2
7
Q 3 2
Q 2 1
B 2 3
B 1 5
Q 2 1
Q 2 4
Q 2 3

Sample Output

-1
2
5
1
2
 
题意:
两个操作:
1.将两个点联通
2.求某个点所在的集合第k大
思路:
动态开点,对每个点建一棵线段树,用并查集维护这些点的联通情况,第一个操作,用线段树合并,第二个操作就在线段树上找第k大就好了。
 
实现代码:
#include<bits/stdc++.h>
using namespace std;
#define mid int m = (l + r) >> 1
const int M = 1e5 + ; int fa[M],a[M],pos[M],root[M];
int sum[M*],ls[M*],rs[M*],idx; int Find(int x){
if(fa[x] != x) fa[x] = Find(fa[x]);
return fa[x];
} void update(int p,int l,int r,int &rt){
if(!rt) rt = ++idx;
if(l == r){
sum[rt]++;
return ;
}
mid;
if(p <= m) update(p,l,m,ls[rt]);
else update(p,m+,r,rs[rt]);
sum[rt] = sum[ls[rt]] + sum[rs[rt]];
} int query(int p,int l,int r,int rt){
if(l == r) return l;
mid;
if(p <= sum[ls[rt]]) return query(p,l,m,ls[rt]);
else return query(p-sum[ls[rt]],m+,r,rs[rt]);
} int Merge(int x,int y){
if(!x) return y;
if(!y) return x;
ls[y] = Merge(ls[x],ls[y]);
rs[y] = Merge(rs[x],rs[y]);
sum[y] = sum[ls[y]] + sum[rs[y]];
return y;
} int main()
{
int n,m,q,x,y;
char op[];
scanf("%d%d",&n,&m);
for(int i = ;i <= n;i ++) fa[i] = i;
for(int i = ;i <= n;i ++) scanf("%d",&a[i]);
for(int i = ;i <= m;i ++){
scanf("%d%d",&x,&y);
int fx = Find(x),fy = Find(y);
fa[fx] = fy;
}
for(int i = ;i <= n;i ++){
update(a[i],,n,root[Find(i)]);
pos[a[i]] = i;
}
scanf("%d",&q);
while(q--){
scanf("%s",op);
scanf("%d%d",&x,&y);
if(op[] == 'Q'){
if(sum[root[Find(x)]] < y){
printf("%d\n",-);
continue;
}
int num = query(y,,n,root[Find(x)]);
printf("%d\n",pos[num]);
}
else{
int fx = Find(x),fy = Find(y);
if(x == y) continue;
fa[fx] = fy; root[fy] = Merge(root[fx],root[fy]);
}
}
return ;
}

bzoj 2733 : [HNOI2012]永无乡 (线段树合并)的更多相关文章

  1. bzoj 2733: [HNOI2012]永无乡 -- 线段树

    2733: [HNOI2012]永无乡 Time Limit: 10 Sec  Memory Limit: 128 MB Description 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自 ...

  2. Bzoj 2733: [HNOI2012]永无乡(线段树+启发式合并)

    2733: [HNOI2012]永无乡 Time Limit: 10 Sec Memory Limit: 128 MB Description 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己 ...

  3. BZOJ 2733 [HNOI2012]永无乡 ——线段树 并查集

    用并查集维护联通块. 用线段树的合并来合并联通块. 自己YY了一个写法. #include <map> #include <cmath> #include <queue& ...

  4. 2733: [HNOI2012]永无乡 线段树合并

    题目: https://www.lydsy.com/JudgeOnline/problem.php?id=2733 题解: 建n棵动态开点的权值线段树,然后边用并查集维护连通性,边合并线段树维护第k重 ...

  5. BZOJ 2733: [HNOI2012]永无乡 [splay启发式合并]

    2733: [HNOI2012]永无乡 题意:加边,询问一个连通块中k小值 终于写了一下splay启发式合并 本题直接splay上一个节点对应图上一个点就可以了 并查集维护连通性 合并的时候,把siz ...

  6. BZOJ 2733: [HNOI2012]永无乡(treap + 启发式合并 + 并查集)

    不难...treap + 启发式合并 + 并查集 搞搞就行了 --------------------------------------------------------------------- ...

  7. [HNOI2012]永无乡 线段树合并

    [HNOI2012]永无乡 LG传送门 线段树合并练手题,写这篇博客只是为了给我的这篇文章找个板子题. 并查集维护连通性,对于不在同一个连通块内的合并操作每次直接合并两颗线段树,复杂度\(O(n \l ...

  8. bzoj2733: [HNOI2012]永无乡 线段树合并

    永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以从一个岛 到达另一个岛. ...

  9. BZOJ2733[HNOI2012]永无乡——线段树合并+并查集+启发式合并

    题目描述 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以从一个岛 到达 ...

随机推荐

  1. Day14 Python基础之os/sys/hashlib模块(十二)

    os模块 os.getcwd()  #获取当前工作路径 os.chdir(‘dirname1/dirname2/dirname3’) #改变当前脚本的工作路径,相当于cmd下的cd os.makedi ...

  2. Day11 Python基础之装饰器(高级函数)(九)

    在python中,装饰器.生成器和迭代器是特别重要的高级函数   https://www.cnblogs.com/yuanchenqi/articles/5830025.html 装饰器 1.如果说装 ...

  3. 线程中的current thread not owner异常错误

    多线程常用的一些方法: wait(),wait(long),notify(),notifyAll()等 这些方法是当前类的实例方法, wait()      是使持有对象锁的线程释放锁;wait(lo ...

  4. HTTP之referrer

    我们知道,在页面引入图片.JS 等资源,或者从一个页面跳到另一个页面,都会产生新的 HTTP 请求,浏览器一般都会给这些请求头加上表示来源的 Referrer 字段.Referrer 在分析用户来源时 ...

  5. jdk环境变量配置注意事项

    cmd 运行java -version 显示错误 Registry key 'Software\JavaSoft\Java Runtime Environment\CurrentVersion'has ...

  6. js-canvas(基本用法)

    ###1. canvas(画布) <canvas>是HTML 5 新增的元素,可用于通过使用JavaScript中的脚本来绘制图形 默认宽高为300px*150px 基本概念和方法入门推荐 ...

  7. apach ab 安装时的错误

    1.cmd进入bin下:执行httpd -k install 需要管理员 登陆安装 我们打开conf文件夹,找到httpd.conf,修改如下内容,让serverroot指向你的安装位置: Defin ...

  8. Jquery模拟多选框(checkbox)

    代码如下: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <tit ...

  9. 微信小程序自定义组件

    要做自定义组件,我们先定一个小目标,比如说我们在小程序中实现一下 WEUI 中的弹窗组件,基本效果图如下. Step1 我们初始化一个小程序(本示例基础版本库为 1.7 ),删掉里面的示例代码,并新建 ...

  10. eclipse 编码

    单个修改 右击 选择properties