题目描述

小易总是感觉饥饿,所以作为章鱼的小易经常出去寻找贝壳吃。最开始小易在一个初始位置x_0。对于小易所处的当前位置x,他只能通过神秘的力量移动到 4 * x + 3或者8 * x + 7。因为使用神秘力量要耗费太多体力,所以它只能使用神秘力量最多100,000次。贝壳总生长在能被1,000,000,007整除的位置(比如:位置0,位置1,000,000,007,位置2,000,000,014等)。小易需要你帮忙计算最少需要使用多少次神秘力量就能吃到贝壳。

输入描述:

输入一个初始位置x_0,范围在1到1,000,000,006

输出描述:

输出小易最少需要使用神秘力量的次数,如果使用次数使用完还没找到贝壳,则输出-1

示例1

输入

125000000

输出

1

分析:

  这道题我们只能把每步都分为两种情况,使用神秘力量1(4 * x + 3)和使用神秘力量2(8 * x + 7)。从出发点开始枚举,使用广度优先遍历算法(BFS)。由于贝壳出现在能被1,000,000,007整除的位置,所以我们只需要考虑%1000000007后的结果。我们要记录初次到达某个位置时使用了几次神秘力量。

第一种方法:

from collections import deque
mod = 1e9+7
n = int(raw_input().strip())
currentPos = n%mod
power = {}
power[currentPos] = 0
d = deque()
d.append(currentPos)
flag = False
while len(d):
currentPos = d.popleft()
if power[currentPos] > 100000:
break
if currentPos == 0:
flag = True
break
nextPos = (4*currentPos+3)%mod
if nextPos not in power:
power[nextPos] = power[currentPos]+1
d.append(nextPos)
nextPos = (8*currentPos+7)%mod
if nextPos not in power:
power[nextPos] = power[currentPos]+1
d.append(nextPos)
if flag:
print(power[currentPos])
else:
print(-1)

第二种方法:

观察变换形式,并做变形:

4x+3=4(x+1)-1

8x+7=8(x+1)-1

如果多层嵌套呢?

y=4x+3

8y+7=8((4(x+1)-1)+1)-1=8(4(x+1))-1=32(x+1)-1

如果你多枚举一些,就会发现,能变换出的数的形式都是:

a(x+1)-1,其中a是2的>=2的幂次数(4、8、16、32、64、……)

我们可以利用这个特点

考虑直接枚举那个a,从2^2一直到……等等,最大是2的多少次?

答:直接考虑最大情况,每次变换都选择8x+7那种,也就是,每次a乘上8,也就是说,最坏是(2^3)^100000=2^300000次

所以,枚举a,从2^2次,一直到2^300000次

然后,对每个a检查一下,乘起来结果%1e9+7是不是0,如果是0,说明100000次之内有解

——问:那最小要执行几次变换?

答:我们直接贪心,尽量让a乘8(乘2次8和乘3次4一样大,当然是乘8越多,变换次数越少)

——问:如果我发现a==2^5或a==2^4的时候满足要求,但是5和4才不能表示成3的倍数,怎么办?

答:别忘了你手上还有4x+3的变换(就是a乘4的变换)

对5这种情况,除以3余2,那刚好,用一次乘4的变换就行了

对4这种情况,除以3余1,我们考虑,消去一个乘8的变换,用2个乘4的变换代替并补足。

n = int(raw_input().strip())
mod = int(1e9+7)
ans = -1
time = 4
for i in range(1,300001):
x = (n*time+time-1)%mod
if x == 0:
ans = (i+1)/3
if (i+1)%3:
ans += 1
break
time = (time*2)%mod
print(ans)

第二种方法要比第一种方法高效一点

参考博客:

http://blog.csdn.net/fcxxzux/article/details/52138964#t0

饥饿的小易(枚举+广度优先遍历(BFS))的更多相关文章

  1. python 饥饿的小易(网易笔试题)

    本周早些时候,学弟给我发了一道网易的笔试题,饥饿的小易,感觉有点意思-分享给大家 题目描述: 小易总是感觉饥饿,所以作为章鱼的小易经常出去寻找贝壳吃.最开始小易在一个初始位置x_0.对于小易所处的当前 ...

  2. 广度优先遍历-BFS、深度优先遍历-DFS

    广度优先遍历-BFS 广度优先遍历类似与二叉树的层序遍历算法,它的基本思想是:首先访问起始顶点v,接着由v出发,依次访问v的各个未访问的顶点w1 w2 w3....wn,然后再依次访问w1 w2 w3 ...

  3. 算法学习 - 图的广度优先遍历(BFS) (C++)

    广度优先遍历 广度优先遍历是非经常见和普遍的一种图的遍历方法了,除了BFS还有DFS也就是深度优先遍历方法.我在我下一篇博客里面会写. 遍历过程 相信每一个看这篇博客的人,都能看懂邻接链表存储图. 不 ...

  4. 图的深度优先遍历(DFS)和广度优先遍历(BFS)

    body, table{font-family: 微软雅黑; font-size: 13.5pt} table{border-collapse: collapse; border: solid gra ...

  5. 17.广度优先遍历bfs

    #include <iostream> #include <boost/config.hpp> //图(矩阵实现) #include <boost/graph/adjac ...

  6. 图的深度优先遍历(DFS)和广度优先遍历(BFS)算法分析

    1. 深度优先遍历 深度优先遍历(Depth First Search)的主要思想是: 1.首先以一个未被访问过的顶点作为起始顶点,沿当前顶点的边走到未访问过的顶点: 2.当没有未访问过的顶点时,则回 ...

  7. 【C++】基于邻接矩阵的图的深度优先遍历(DFS)和广度优先遍历(BFS)

    写在前面:本博客为本人原创,严禁任何形式的转载!本博客只允许放在博客园(.cnblogs.com),如果您在其他网站看到这篇博文,请通过下面这个唯一的合法链接转到原文! 本博客全网唯一合法URL:ht ...

  8. 题目1457:非常可乐(广度优先遍历BFS)

    题目链接:http://ac.jobdu.com/problem.php?pid=1457 详解链接:https://github.com/zpfbuaa/JobduInCPlusPlus 参考代码: ...

  9. 图的广度优先遍历(bfs)

    广度优先遍历: 1.将起点s 放入队列Q(访问) 2.只要Q不为空,就循环执行下列处理 (1)从Q取出顶点u 进行访问(访问结束) (2)将与u 相邻的未访问顶点v 放入Q, 同时将d[v]更新为d[ ...

随机推荐

  1. vue路由页面加载的几种方法~

    懒加载 (1)定义:懒加载也叫延迟加载,即在需要的时候进行加载,随用随载. (2)为什么需要懒加载: 在单页应用中,如果没有应用懒加载,运用webpack打包后的文件将会异常的大,造成进入首页时,需要 ...

  2. 鸟哥私房菜笔记-1 (S0_S3)

    学新东西,总感觉还是看书来的实在,直接看教程上手太慢且没有目的, 接下来先啃鸟哥这本吧,买的第三版,内容在鸟哥站上都有: 鸟哥的 Linux 私房菜 -- 基础学习篇目录 (繁体) http://cn ...

  3. 解决 LLVM 错误提示 may only occur zero or one times!

    使用 LLVM 混淆器添加参数进行编译提示如下错误:clang (LLVM option parsing): for the -bcf option: may only occur zero or o ...

  4. 【每天一条Linux指令-Day1】kill掉多个mysql的进程

    我被问到过一个shell的问题,问的是如何kill掉多个mysql的进程? 怎么把这个的pid传递下去 ps -ef|grep mysql | xargs kill -9 ps -ef|grep my ...

  5. 小心使用replicate_do_db和replicate_ignore_db

    内容来源于网络 使用replicate_do_db和replicate_ignore_db时有一个隐患,跨库更新时会出错 如设置 replicate_do_db=testuse mysql;updat ...

  6. Java软件开发者,如何学习大数据?

    正常来讲学习大数据之前都要做到以下几点 1.学习基础的编程语言(java,python) 2.掌握入门编程基础(linux操作,数据库操作.git操作) 3.学习大数据里面的各种框架(hadoop.h ...

  7. Python系列之入门篇——pytables及其客户端

    pytables及其客户端查看 pytables # ubuntu sudo apt-get install python-tables pip install flask flask-httpaut ...

  8. swig与python

    当你觉得python慢的时候,当你的c/c++代码难以用在python上的时候,你可能会注意这篇文章.swig是一个可以把c/c++代码封装为python库的工具.(本文封装为python3的库) 文 ...

  9. NoSQL入门第四天——事务与主从复制

    一.Redis的事务 1.是什么 可以一次执行多个命令,本质是一组命令的集合.一个事务中的 所有命令都会序列化,按顺序地串行化执行而不会被其它命令插入,不许加塞 (更多请参见官网事务介绍) 2.能干什 ...

  10. 上海Uber优步司机奖励政策(1月11日~1月17日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...