定义

如果一个图\((E,V)\)的顶点集\(E\)能够被能够被分成两个不相交的集合\(X,Y\),且每一条边都恰连接\(X,Y\)中的各一个顶点,那么这个图就是一个二分图

容易得知,它就是不含有奇数环的图(这个等价定义有时候很重要)。

一个匹配是一个边的集合,其中任意两条边都没有公共顶点。顾名思义可以得到一个图的最大匹配的定义。特别地,如果一个图的某个匹配中,所有顶点都是匹配点,那么它是一个完美匹配

由完美匹配和最大匹配这两个定义我们可以得到两类问题:

  1. 有没有可能使得所有顶点都被匹配?
  2. 一个图中最多有多少个顶点参与了匹配?

求解最大匹配:匈牙利算法

对于一个正在求匹配的图,我们把依次经过非匹配边、匹配边、非匹配边、……形成的路径叫交替路;而如果一个未匹配点走交替路到了另外一个未匹配点,那么这条交替路成为增广路

仔细思考一下,就会发现增广路的一个特点:非匹配边比匹配边多一条。这有什么意义呢?当我们把增广路中匹配边、非匹配边的性质交换后,匹配的性质不变,但是匹配边多了一条——我们改进了匹配。

因此,我们可以通过不停的找增广路来增加匹配中的匹配边和匹配点。然后,根据增广路定理,一个图找不到增广路时,就是它达到最大匹配的时候。

下面简单的说一下匈牙利算法:

  1. 从二分节点后的左边第1个顶点开始,挑选未匹配点进行搜索,寻找增广路。

    a. 如果经过一个未匹配点,说明寻找成功。更新路径信息,匹配边数+1,停止搜索。

    b. 如果一直没有找到增广路,则不再从这个点开始搜索。事实上,此时搜索后会形成一棵匈牙利树。我们可以永久性地把它从图中删去,而不影响结果。
  2. 由于找到增广路之后需要沿着路径更新匹配,所以我们需要一个结构来记录路径上的点。DFS 版本通过函数调用隐式地使用一个栈,而 BFS 版本使用pre数组。

    上面提到了匈牙利树。那么这个是什么?匈牙利树他是这样的性质,从根节点到叶节点的路径均是交替路,且匈牙利树的叶节点都是匹配点

例题:HDU-2063 过山车

经典板子题。

#include <bits/stdc++.h>
#define MP make_pair
#define PB push_back
#define fi first
#define se second
#define ZERO(x) memset((x), 0, sizeof(x))
#define ALL(x) (x).begin(),(x).end()
#define rep(i, a, b) for (repType i = (a); i <= (b); ++i)
#define per(i, a, b) for (repType i = (a); i >= (b); --i)
#define QUICKIO \
ios::sync_with_stdio(false); \
cin.tie(0); \
cout.tie(0);
using namespace std;
typedef long long ll;
typedef int repType;
const int MAXN=505;
int k,m,n;
bool mat[MAXN][MAXN],used[MAXN];
int linker[MAXN]; int dfs(int boy)
{
rep(g,1,n) // girl
{
if(mat[boy][g] && !used[g])
{
used[g]=true;
if(linker[g]==-1 || dfs(linker[g]))
{
linker[g]=boy;
return true;
}
}
}
return false;
} int hungary()
{
int ans=0;
memset(linker,-1,sizeof(linker));
rep(b,1,m) // boy
{
ZERO(used);
if(dfs(b)) ans++;
}
return ans;
} int main()
{
while(cin>>k)
{
if(!k) break;
cin>>m>>n;
ZERO(mat);
rep(i,1,k)
{
int a,b; cin>>a>>b;
mat[a][b]=true;
}
cout<<hungary()<<endl;
}
return 0;
}

其他的题型

简单改一下:HYSBZ - 1191 超级英雄Hero

最小路径覆盖

二分图最大独立集

参考网址与资源

https://www.renfei.org/blog/bipartite-matching.html

https://www.cnblogs.com/YiXiaoZhou/p/5875040.html

https://www.cnblogs.com/kuangbin/archive/2012/08/26/2657446.html

「知识学习」二分图的最大匹配、完美匹配和匈牙利算法(HDU-2063)的更多相关文章

  1. Solution -「洛谷 P6577」「模板」二分图最大权完美匹配

    \(\mathcal{Description}\)   Link.   给定二分图 \(G=(V=X\cup Y,E)\),\(|X|=|Y|=n\),边 \((u,v)\in E\) 有权 \(w( ...

  2. 【模板】二分图最大权完美匹配(KM算法)/洛谷P6577

    题目链接 https://www.luogu.com.cn/problem/P6577 题目大意 给定一个二分图,其左右点的个数各为 \(n\),带权边数为 \(m\),保证存在完美匹配. 求一种完美 ...

  3. HDU_2255 二分图最佳完美匹配 KM匈牙利算法

    一开始还没看懂这个算法,后来看了陶叔去年的PPT的实例演示才弄懂 用一个lx[]和ly[]来记录X和Y集合中点的权值,有个定理是 lx[i]+ly[j]==w[i][j](边权值) 则该点是最佳匹配, ...

  4. 【模板】二分图最大权完美匹配KM算法

    hdu2255模板题 KM是什么意思,详见百度百科. 总之知道它可以求二分图最大权完美匹配就可以了,时间复杂度为O(n^3). 给张图. 二分图有了边权,求最大匹配下的最大权值. 所以该怎么做呢?对啊 ...

  5. 【二分图最大权完美匹配】【KM算法】【转】

    [文章详解出处]https://www.cnblogs.com/wenruo/p/5264235.html KM算法是用来求二分图最大权完美匹配的.[也就算之前的匈牙利算法求二分最大匹配的变种??] ...

  6. 紫书 例题11-10 UVa 1349 (二分图最小权完美匹配)

    二分图网络流做法 (1)最大基数匹配.源点到每一个X节点连一条容量为1的弧, 每一个Y节点连一条容量为1的弧, 然后每条有向 边连一条弧, 容量为1, 然后跑一遍最大流即可, 最大流即是最大匹配对数 ...

  7. UVa 1349 (二分图最小权完美匹配) Optimal Bus Route Design

    题意: 给出一个有向带权图,找到若干个圈,使得每个点恰好属于一个圈.而且这些圈所有边的权值之和最小. 分析: 每个点恰好属于一个有向圈 就等价于 每个点都有唯一后继. 所以把每个点i拆成两个点,Xi  ...

  8. UVA 1349 Optimal Bus Route Design (二分图最小权完美匹配)

    恰好属于一个圈,那等价与每个点有唯一的前驱和后继,这让人想到了二分图, 把一个点拆开,点的前驱作为S集和点的后继作为T集,然后连边,跑二分图最小权完美匹配. 写的费用流..最大权完美匹配KM算法没看懂 ...

  9. HDU5090--Game with Pearls 二分图匹配 (匈牙利算法)

    题意:给N个容器,每个容器里有一定数目的珍珠,现在Jerry开始在管子上面再放一些珍珠,放上的珍珠数必须是K的倍数,可以不放.最后将容器排序,如果可以做到第i个容器上面有i个珍珠,则Jerry胜出,反 ...

随机推荐

  1. Coursera 机器学习基石 第4讲 学习的可行性

    这一节讲述的是机器学习的核心.根本性问题——学习的可行性.学过机器学习的我们都知道,要衡量一个机器学习算法是否具有学习能力,看的不是这个模型在已有的训练数据集上的表现如何,而是这个模型在训练数据外的数 ...

  2. Office365学习笔记—获取当前用户

    1,页面上有个_spPageContextInfo对象,可以获取一些我们需要的东西. (1)获取当前用户Id var userId=_spPageContextInfo.userId; (2)获取当前 ...

  3. python 输入三个整数,按照从小到大的顺序打印

    # # 3 输入三个整数,按照从小到大的顺序打印 a = int(input('请输入第一个整数:')) b = int(input('请输入第二个整数:')) c = int(input('请输入第 ...

  4. Magazine Ad CodeForces - 803D(二分 + 贪心,第一次写博客)

    Magazine Ad The main city magazine offers its readers an opportunity to publish their ads. The forma ...

  5. 爬虫——Scrapy框架案例一:手机APP抓包

    以爬取斗鱼直播上的信息为例: URL地址:http://capi.douyucdn.cn/api/v1/getVerticalRoom?limit=20&offset=0 爬取字段:房间ID. ...

  6. linux系统基础之六--系统引导(基于centos7.4 1708)

  7. 基于jquery,ajax请求及自我终止的函数封装。

    场景描述: 在我们平时的开发过程中,经常会遇到这样的情况.在搜索功能中进行模糊搜索或者联想关联. 这就要我们每次对输入框中的数据进行改动时,都要发送一次请求.当在短时间内多次操作改动时,问题就出现了. ...

  8. TinyMCE插件:Filemanager [4.x-6.x] 文件名统一格式化

    上传图片程序(filemanager/upload.php) 在if (!empty($_FILES) && $upload_files)中上传图片时,在文件正式上传至服务器前,有一次 ...

  9. HTML5新标签兼容——> <!--<if lt IE 9><!endif-->

    第一种方法:(使用html5shiv) <!--[if lt IE9]> <script src="http://html5shiv.googlecode.com/svn/ ...

  10. 微信小程序 —— 仿制豆瓣(一)

    先预览一下效果 欢迎扫码查看 码云地址:https://gitee.com/mk_23/little_chen_xu.git 预览完成,首先进入app.json文件中配置参数,主要就是配置我们要用的页 ...