【题解】51nod1967 路径定向
第一次写欧拉回路,实际上只要dfs下去就可以了,反正每条边都是要遍历一遍的……
关键有两个性质:1.一个无向图存在欧拉回路,当且仅当该图所有顶点度数都为偶数,且该图是连通图。2.一个有向图存在欧拉回路,所有顶点的入度等于出度且该图是连通图。
所以我们可以将所有的奇点之间两两连边使得它们成为偶点。此时这张图上必然存在欧拉路径,也就是所有顶点的入度等于出度,我们只需要减去奇点即可。
#include <bits/stdc++.h>
using namespace std;
#define maxn 1000000
int n, m, tot, cnt;
int e[maxn], rec[maxn], degree[maxn]; int read()
{
int x = , k = ;
char c;
c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} struct edge
{
int cnp, to[maxn], last[maxn], head[maxn], id[maxn], mark[maxn];
edge() { cnp = ; }
void add(int u, int v)
{
to[cnp] = v, id[cnp] = , last[cnp] = head[u], head[u] = cnp ++;
to[cnp] = u, id[cnp] = , last[cnp] = head[v], head[v] = cnp ++;
}
}E1; void dfs(int u)
{
for(int i = E1.head[u]; i; i = E1.last[i])
{
if(E1.mark[i]) continue;
int v = E1.to[i];
if(E1.id[i]) E1.mark[i] = E1.mark[i ^ ] = ;
else E1.mark[i] = E1.mark[i ^ ] = ;
dfs(v);
}
} int main()
{
n = read(), m = read();
for(int i = ; i <= m; i ++)
{
int x = read(), y = read();
degree[x] ++, degree[y] ++; E1.add(x, y);
}
for(int i = ; i <= n; i ++)
if(degree[i] & ) e[++ cnt] = i;
int M = E1.cnp;
for(int i = ; i <= cnt; i += )
{
int x = e[i], y = e[i + ];
E1.add(x, y);
}
for(int i = ; i <= n; i ++) dfs(i);
printf("%d\n", n - cnt);
for(int i = ; i < M; i += )
if(E1.mark[i] == ) putchar('');
else putchar('');
return ;
}
【题解】51nod1967 路径定向的更多相关文章
- 51nod1967 路径定向 Fleury
题目传送门 题解 几乎是Fleury模板题. 一开始我们把图看作无向图,然后对于度为奇数的点增边,使得整个图的所有点都是偶数的. 然后跑一遍欧拉回路 Fleury ,所有的边就定向好了~ 代码 #in ...
- 51nod1967 路径定向(欧拉回路+结论题)
看到入度等于出度想到欧拉回路. 我们把边都变成无向边,有一个结论是偶数度的点都可以变成出入度相等的点,而奇数点的不行,感性理解分类讨论一下就知道是对的. 还有一个更好理解的结论是变成无向边后奇数点的个 ...
- 51nod 1967路径定向(dfs、欧拉回路)
1967 路径定向 基准时间限制:1.2 秒 空间限制:262144 KB 分值: 80 难度:5级算法题 给出一个有向图,要求给每条边重定向,使得定向后出度等于入度的点最多,输出答案和任意一种方案 ...
- 51nod 1967 路径定向(不错的欧拉回路)
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1967 题意: 思路: 出度=入度,这很容易想到欧拉回路,事实上,这道题目 ...
- 51Nod 1967 路径定向 —— 欧拉回路
题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1967 显然是欧拉回路问题,度数为奇数的点之间连边,跑欧拉回路就可以 ...
- 51nod 1967路径定向(欧拉回路)
题目大意:给出一个图,安排边的方向,使得入度等于出度的点数最多,并给出方案. 首先假设是个无向图,不妨认定偶点必定可以满足条件 我们还会发现,奇点的个数必定是偶数个 那么如果把奇点两两用辅助边连起来, ...
- 51nod 1967 路径定向——欧拉回路
题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1967 一共只会有偶数个奇数度的点.因为每多一条边,总度数加2. 把 ...
- 51nod图论题解(4级,5级算法题)
51nod图论题解(4级,5级算法题) 1805 小树 基准时间限制:1.5 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 她发现她的树的点上都有一个标号(从1到n),这些树都在空 ...
- Wannafly挑战赛29题解
这套题目非常有意思啊23333--话说为啥没有上条先生的呢-- 传送门 \(A\) 御坂美琴 蠢了--首先先判总共加起来等不等于\(n\),不是的话就不行 然后dfs记录\(n\)不断分下去能分成哪些 ...
随机推荐
- 【机器学习笔记】循环神经网络RNN
1. 从一个栗子开始 - Slot Filling 比如在一个订票系统上,我们的输入 "Arrive Taipei on November 2nd" 这样一个序列,我们设置几个槽位 ...
- LeetCode: 31. Next Permutation (Medium)
1. 原题链接 https://leetcode.com/problems/next-permutation/description/ 2. 题目要求 给出一个整型数组,让我们给出下一个排序情况.注意 ...
- SLAM前沿问题梳理
鲁棒性问题:数据关联是影响系统鲁棒性的主要原因 特征提取.线特征 短期内的数据关联是最容易处理的,新的研究方向包括特征提取.线特征等. 回环检测 对于前端的环闭合检测,检测当前测量中的特征并试图将它们 ...
- linux_fdisk命令详解,关于分区的详解
这篇文章写的十分详细,特别的好 fdisk -l 可以列出所有的分区,包括没有挂上的分区和usb设备.我一般用这个来查找需要挂载的分区的位置,比如挂上u盘. 实例解说Linux中fdisk分区使用方法 ...
- 「日常训练」Skills(Codeforce Round #339 Div.2 D)
题意(CodeForces 614D) 每个人有\(n(n\le 10^5)\)个技能,技能等级都在\([0,10^9]\)的范围,每个技能有一个当前等级,所有技能的最高等级都为A.一个人的力量被记做 ...
- Python 集合内置函数大全(非常全!)
Python集合内置函数操作大全 集合(s).方法名 等价符号 方法说明 s.issubset(t) s <= t 子集测试(允许不严格意义上的子集):s 中所有的元素都是 t 的成员 s ...
- C# 中访问修饰符
1.public 完全公开的,公共的 2. private 私有的,只能在当前类的内部访问, 不可修饰类 3.protected 受保护的,只能在当前类的内部以及其子类中访问,不能用来修饰类 4.in ...
- 小程序页面的四种文件(JSON、WXML、WXSS、JS)加载顺序
一个小程序页面由四种文件组成: 1)json 页面配置文件 2)js 页面逻辑文件(必需) 3)wxml 页面结构文件(必需) 4)wxss 页面样式文件 这四个文件的加载顺序: 第一步: 加载页面j ...
- spark-shell解析
spark-shell 作用: 调用spark-submit脚本,如下参数 --classorg.apache.spark.repl.Main --name "Spark shell&quo ...
- HDU 2491 Priest John's Busiest Day(贪心)(2008 Asia Regional Beijing)
Description John is the only priest in his town. October 26th is the John's busiest day in a year be ...