HDU 6060 RXD and dividing(LCA)
【题目链接】 http://acm.hdu.edu.cn/showproblem.php?pid=6060
【题目大意】
给一个n个节点的树,要求将2-n号节点分成k部分,
然后将每一部分加上节点1,求每个集合最小斯坦纳树的最大权值和。
【题解】
我们按照后序遍历染色分组,得到的一定是最优分组,
现在考虑在不同颜色的虚树上求路径权值和,
我们发现每个点增加的权值是深度减去到根的路径上已被覆盖的长度,
这个长度等于与dfs序前继的LCA的深度,因此我们在搜索的同时计算与dfs序前继的LCA即可。
But,发现多校题解完全不是我想的这样子。对于每条边来说,他的贡献值是min(k,size),然后dfs一遍即可,实现也很是简单。
Amazing
【代码】
#include <cstdio>
#include <algorithm>
#include <list>
#include <vector>
using namespace std;
const int N=1000010;
typedef long long LL;
LL d[N];
int f[N],lst[N],c[N],st[N],en[N],dfn,size[N],son[N];
vector<int> v[N],w[N];
namespace fastIO{
#define BUF_SIZE 100000
bool IOerror=0;
inline char nc(){
static char buf[BUF_SIZE],*p1=buf+BUF_SIZE,*pend=buf+BUF_SIZE;
if(p1==pend){
p1=buf;
pend=buf+fread(buf,1,BUF_SIZE,stdin);
if(pend==p1){
IOerror=1;
return -1;
}
}return *p1++;
}
inline bool blank(char ch){
return ch==' '||ch=='\n'||ch=='\r'||ch=='\t';
}
inline bool read(int &x){
char ch;
while(blank(ch=nc()));
if(IOerror)return false;
for(x=ch-'0';(ch=nc())>='0'&&ch<='9';x=x*10+ch-'0');
return true;
}
#undef BUF_SIZE
};
int n,m,x,y,z;
int cnt,D[N],top[N];
LL ans;
void dfs(int x){
size[x]=1;
for(int i=0;i<v[x].size();i++){
int y=v[x][i];
if(y==f[x])continue;
f[y]=x; D[y]=D[x]+1;
dfs(y); size[x]+=size[y];
if(size[y]>size[son[x]])son[x]=y;
}cnt++;
if(cnt>m)cnt=1;
c[x]=cnt;
}
void dfs1(int x,int y){
if(x==-1)return;
st[x]=++dfn; top[x]=y;
if(son[x])dfs1(son[x],y);
for(int i=0;i<v[x].size();i++)if(v[x][i]!=son[x]&&v[x][i]!=f[x])dfs1(v[x][i],v[x][i]);
en[x]=dfn;
}
int lca(int x,int y){
for(;top[x]!=top[y];x=f[top[x]])if(D[top[x]]<D[top[y]]){int z=x;x=y;y=z;}
return D[x]<D[y]?x:y;
}
void dfs2(int x){
int cx=c[x];
if(lst[cx]){
int y=lst[cx];
y=lca(x,y);
ans+=d[x]-d[y];
}else ans+=d[x];
lst[cx]=x;
for(int i=0;i<v[x].size();i++){
int y=v[x][i],z=w[x][i];
//printf("--%d %d\n",y,z);
if(y==f[x])continue;
d[y]=d[x]+z;
dfs2(y);
}
}
using namespace fastIO;
int main(){
while(read(n)){
read(m); ans=0;
for(int i=1;i<=n;i++)v[i].clear(),w[i].clear(),lst[i]=0,son[i]=-1;
for(int i=1;i<n;i++){
read(x); read(y); read(z);
v[x].push_back(y);
v[y].push_back(x);
w[x].push_back(z);
w[y].push_back(z);
}dfn=cnt=0;
dfs(1); c[1]=0;
dfs1(1,1);
dfs2(1);
printf("%lld\n",ans);
}return 0;
}
HDU 6060 RXD and dividing(LCA)的更多相关文章
- HDU 6060 RXD and dividing(dfs 思维)
RXD and dividing Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Other ...
- HDU 6060 RXD and dividing(思维+计算贡献值)
http://acm.hdu.edu.cn/showproblem.php?pid=6060 题意: 给定一棵 n 个节点的树,1 为根.现要将节点 2 ~ n 划分为 k 块,使得每一块与根节点形成 ...
- HDU 6060 - RXD and dividing | 2017 Multi-University Training Contest 3
/* HDU 6060 - RXD and dividing [ 分析,图论 ] | 2017 Multi-University Training Contest 3 题意: 给一个 n 个节点的树, ...
- HDU 6060:RXD and dividing(DFS)
题目链接 题意 给出n个点,要把除1以外的点分成k个集合,然后对于每个集合要和1这个点一起求一个最小生成树,然后问这k个最小生成树的最大总和是多少. 思路 因为每个集合都包含1这个点,因此对于每个点都 ...
- 【构造+DFS】2017多校训练三 HDU 6060 RXD and dividing
acm.hdu.edu.cn/showproblem.php?pid=6060 [题意] 给定一棵以1为根的树,把这颗树除1以外的结点划分为k个集合(可以有空集),把1加入划分后的集合 每个集合的结点 ...
- HDU 2874 Connections between cities(LCA)
题目链接 Connections between cities LCA的模板题啦. #include <bits/stdc++.h> using namespace std; #defin ...
- HDU 6061 RXD and functions(NTT)
题意 给定一个\(n\) 次的 \(f\) 函数,向右移动 \(m\) 次得到 \(g\) 函数,第 \(i\) 次移动长度是 \(a_i\) ,求 \(g\) 函数解析式的各项系数,对 ...
- 2017 Multi-University Training Contest - Team 3 RXD and dividing(树)
题解: 其实贪心地算就可以了 一个最优的分配就是每条边权贡献的值为min(k, sz[x]),sz[x]是指子树的大小 然后最后加起来就是答案. #include <iostream> # ...
- 洛谷P3379 【模板】最近公共祖先(LCA)
P3379 [模板]最近公共祖先(LCA) 152通过 532提交 题目提供者HansBug 标签 难度普及+/提高 提交 讨论 题解 最新讨论 为什么还是超时.... 倍增怎么70!!题解好像有 ...
随机推荐
- 【洛谷 T47488】 D:希望 (点分治)
题目链接 看到这种找树链的题目肯定是想到点分治的. 我码了一下午,\(debug\)一晚上,终于做到只有两个点TLE了. 我的是不完美做法 加上特判\(A\)了这题qwq 记录每个字母在母串中出现的所 ...
- 分类算法:决策树(C4.5)(转)
C4.5是机器学习算法中的另一个分类决策树算法,它是基于ID3算法进行改进后的一种重要算法,相比于ID3算法,改进有如下几个要点: 1)用信息增益率来选择属性.ID3选择属性用的是子树的信息增益,这里 ...
- monkey测试===如何获取android app的Activity
方法一(推荐): 手机连接adb,手机界面在需要取得activity的界面. 推荐使用该命令: adb shell dumpsys activity top | findstr ACTIVITY 获取 ...
- 基数排序c++实现
基数排序:是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较.由于整数也可以表达字符串(比如名字或日期)和特定格式的浮点数,所以基数排序也不是只能使用于整数.但在 ...
- 【bzoj3545】peaks
离线一下,动态开点+线段树合并,然后权值线段树上询问kth即可. #include<bits/stdc++.h> ; *; using namespace std; ; inline in ...
- C基础 redis缓存访问
引言 先说redis安装, 这里采用的环境是. Linux version --generic (buildd@lgw01-) (gcc version (Ubuntu -14ubuntu2) ) # ...
- 初学者学习Javascript很吃力怎么办?到底该如何学习Js?
Js给初学者的印象总是那么的“杂而乱”,相信很多初学者都在找轻松学习Js的途径.在这里给大家总结一些学习Js的经验,希望能给后来的学习者探索出一条“轻松学习Js之路”. Js给人那种感觉的原因多半 ...
- Java显式锁学习总结之一:概论
我们都知道在java中,当多个线程需要并发访问共享资源时需要使用同步,我们经常使用的同步方式就是synchronized关键字,事实上,在jdk1.5之前,只有synchronized一种同步方式.而 ...
- windows下github 出现Permission denied (publickey)
github教科书传送门:http://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b000 再学习到 ...
- classpath中怎样一次性加入整个目录的jar文件
linux可以通过shell来处理 1 2 3 for jar in $HOME/lib/*.jar; do CLASSPATH=$CLASSPATH:$jar done