前言

 * hadoop2.0已经发布了稳定版本了,增加了很多特性,比如HDFS HA、YARN等。最新的hadoop-2.4.1又增加了YARN HA
* 注意:apache提供的hadoop-2.4.1的安装包是在32位操作系统编译的,因为hadoop依赖一些C++的本地库,所以如果在64位的操作上安装hadoop-2.4.1就需要重新在64操作系统上重新编译(建议第一次安装用32位的系统,我将编译好的64位的也上传到群共享里了,如果有兴趣的可以自己编译一下)

前期准备

 * 修改Linux主机名
* 修改IP
* 修改主机名和IP的映射关系
> 注意: 如果你们公司是租用的服务器或是使用的云主机(如华为用主机、阿里云主机等)
/etc/hosts里面要配置的是内网IP地址和主机名的映射关系
* 关闭防火墙
* ssh免登陆
* 安装JDK,配置环境变量等

集群规划:

主机名	    IP		    安装的软件		        运行的进程
weekend01 192.168.1.201 jdk、hadoop NameNode、DFSZKFailoverController(zkfc)
weekend02 192.168.1.202 jdk、hadoop NameNode、DFSZKFailoverController(zkfc)
weekend03 192.168.1.203 jdk、hadoop ResourceManager
weekend04 192.168.1.204 jdk、hadoop ResourceManager
weekend05 192.168.1.205 jdk、hadoop、zookeeper DataNode、NodeManager、JournalNode、QuorumPeerMain
weekend06 192.168.1.206 jdk、hadoop、zookeeper DataNode、NodeManager、JournalNode、QuorumPeerMain
weekend07 192.168.1.207 jdk、hadoop、zookeeper DataNode、NodeManager、JournalNode、QuorumPeerMain

说明:

* 在hadoop2.0中通常由两个NameNode组成,一个处于active状态,另一个处于standby状态。Active NameNode对外提供服务,
而StandbyNameN ode则不对外提供服务,仅同步active namenode的状态,以便能够在它失败时快速进行切换。
* hadoop2.0官方提供了两种HDFS HA的解决方案,一种是NFS,另一种是QJM。这里我们使用简单的QJM。
在该方案中,主备NameNode之间通过一组JournalNode同步元数据信息,一条数据只要成功写入多数JournalNode
即认为写入成功。通常配置奇数个JournalNode
* 这里还配置了一个zookeeper集群,用于ZKFC(DFSZKFailoverController)故障转移,
当Active NameNode挂掉了,会自动切换Standby NameNode为standby状态
* hadoop-2.2.0中依然存在一个问题,就是ResourceManager只有一个,存在单点故障,hadoop-2.4.1解决了这个问题,
有两个ResourceManager,一个是Active,一个是Standby,状态由zookeeper进行协调

安装步骤

* 在yarn05,yarn06,yarn07上安装zookeeper
* 安装配置hadoop集群(在weekend01上操作)
* 修改hadoo-env.sh
export JAVA_HOME=/home/hadoop/app/jdk1.7.0_55 * 修改core-site.xml
<configuration>
<!-- 指定hdfs的nameservice为ns1 -->
<property>
<name>fs.defaultFS</name>
<value>hdfs://ns1/</value>
</property>
<!-- 指定hadoop临时目录 -->
<property>
<name>hadoop.tmp.dir</name>
<value>/home/hadoop/app/hadoop-2.4.1/tmp</value>
</property> <!-- 指定zookeeper地址 -->
<property>
<name>ha.zookeeper.quorum</name>
<value>weekend05:2181,weekend06:2181,weekend07:2181</value>
</property>
</configuration> * 修改hdfs-site.xml
<configuration>
<!--指定hdfs的nameservice为ns1,需要和core-site.xml中的保持一致 -->
<property>
<name>dfs.nameservices</name>
<value>ns1</value>
</property> <!-- ns1下面有两个NameNode,分别是nn1,nn2 -->
<property>
<name>dfs.ha.namenodes.ns1</name>
<value>nn1,nn2</value>
</property> <!-- nn1的RPC通信地址 -->
<property>
<name>dfs.namenode.rpc-address.ns1.nn1</name>
<value>weekend01:9000</value>
</property> <!-- nn1的http通信地址 -->
<property>
<name>dfs.namenode.http-address.ns1.nn1</name>
<value>weekend01:50070</value>
</property> <!-- nn2的RPC通信地址 -->
<property>
<name>dfs.namenode.rpc-address.ns1.nn2</name>
<value>weekend02:9000</value>
</property> <!-- nn2的http通信地址 -->
<property>
<name>dfs.namenode.http-address.ns1.nn2</name>
<value>weekend02:50070</value>
</property> <!-- 指定NameNode的元数据在JournalNode上的存放位置 -->
<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://weekend05:8485;weekend06:8485;weekend07:8485/ns1</value>
</property> <!-- 指定JournalNode在本地磁盘存放数据的位置 -->
<property>
<name>dfs.journalnode.edits.dir</name>
<value>/home/hadoop/app/hadoop-2.4.1/journaldata</value>
</property> <!-- 开启NameNode失败自动切换 -->
<property>
<name>dfs.ha.automatic-failover.enabled</name>
<value>true</value>
</property> <!-- 配置失败自动切换实现方式 -->
<property>
<name>dfs.client.failover.proxy.provider.ns1</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property> <!-- 配置隔离机制方法,多个机制用换行分割,即每个机制暂用一行-->
<property>
<name>dfs.ha.fencing.methods</name>
<value>
sshfence
shell(/bin/true)
</value>
</property> <!-- 使用sshfence隔离机制时需要ssh免登陆 -->
<property>
<name>dfs.ha.fencing.ssh.private-key-files</name>
<value>/home/hadoop/.ssh/id_rsa</value>
</property> <!-- 配置sshfence隔离机制超时时间 -->
<property>
<name>dfs.ha.fencing.ssh.connect-timeout</name>
<value>30000</value>
</property>
</configuration> * 修改mapred-site.xml
<configuration>
<!-- 指定mr框架为yarn方式 -->
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration> *修改yarn-site.xml
<configuration>
<!-- 开启RM高可用 -->
<property>
<name>yarn.resourcemanager.ha.enabled</name>
<value>true</value>
</property>
<!-- 指定RM的cluster id -->
<property>
<name>yarn.resourcemanager.cluster-id</name>
<value>yrc</value>
</property>
<!-- 指定RM的名字 -->
<property>
<name>yarn.resourcemanager.ha.rm-ids</name>
<value>rm1,rm2</value>
</property>
<!-- 分别指定RM的地址 -->
<property>
<name>yarn.resourcemanager.hostname.rm1</name>
<value>weekend03</value>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm2</name>
<value>weekend04</value>
</property>
<!-- 指定zk集群地址 -->
<property>
<name>yarn.resourcemanager.zk-address</name>
<value>weekend05:2181,weekend06:2181,weekend07:2181</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
</configuration> * 修改slaves(slaves是指定子节点的位置,因为要在weekend01上启动HDFS、在weekend03启动yarn,
所以weekend01上的slaves文件指定的是datanode的位置,weekend03上的slaves文件指定的是nodemanager的位置)
weekend05
weekend06
weekend07
* 配置免密码登陆
#首先要配置weekend01到weekend02、weekend03、weekend04、weekend05、weekend06、weekend07的免密码登陆
#在weekend01上生产一对钥匙
ssh-keygen -t rsa
#将公钥拷贝到其他节点,包括自己
ssh-coyp-id weekend01
ssh-coyp-id weekend02
ssh-coyp-id weekend03
ssh-coyp-id weekend04
ssh-coyp-id weekend05
ssh-coyp-id weekend06
ssh-coyp-id weekend07
#配置weekend03到weekend04、weekend05、weekend06、weekend07的免密码登陆
#在weekend03上生产一对钥匙
ssh-keygen -t rsa
#将公钥拷贝到其他节点
ssh-coyp-id weekend04
ssh-coyp-id weekend05
ssh-coyp-id weekend06
ssh-coyp-id weekend07
#注意:两个namenode之间要配置ssh免密码登陆,别忘了配置weekend02到weekend01的免登陆
在weekend02上生产一对钥匙
ssh-keygen -t rsa
ssh-coyp-id -i weekend01
* 将配置好的hadoop拷贝到其他节点
scp -r /weekend/ weekend02:/
scp -r /weekend/ weekend03:/
scp -r /weekend/hadoop-2.4.1/ hadoop@weekend04:/weekend/
scp -r /weekend/hadoop-2.4.1/ hadoop@weekend05:/weekend/
scp -r /weekend/hadoop-2.4.1/ hadoop@weekend06:/weekend/
scp -r /weekend/hadoop-2.4.1/ hadoop@weekend07:/weekend/

严格按照下面的步骤

	* 启动zookeeper集群(分别在weekend05、weekend06、tcast07上启动zk)
cd /weekend/zookeeper-3.4.5/bin/
./zkServer.sh start
#查看状态:一个leader,两个follower
./zkServer.sh status * 启动journalnode(分别在在weekend05、weekend06、tcast07上执行)
cd /weekend/hadoop-2.4.1
sbin/hadoop-daemon.sh start journalnode
#运行jps命令检验,weekend05、weekend06、weekend07上多了JournalNode进程 * 格式化HDFS
#在weekend01上执行命令:
hdfs namenode -format
#格式化后会在根据core-site.xml中的hadoop.tmp.dir配置生成个文件,
这里我配置的是/weekend/hadoop-2.4.1/tmp,然后将/weekend/hadoop-2.4.1/tmp
拷贝到weekend02的/weekend/hadoop-2.4.1/下。
scp -r tmp/ weekend02:/home/hadoop/app/hadoop-2.4.1/
#也可以这样,建议hdfs namenode -bootstrapStandby * 格式化ZKFC(在weekend01上执行即可)
hdfs zkfc -formatZK * 启动HDFS(在weekend01上执行)
sbin/start-dfs.sh * 启动YARN(在weekend03上执行start-yarn.sh,把namenode和resourcemanager分开是因为性能问题,
因为他们都要占用大量资源,所以把他们分开了,他们分开了就要分别在不同的机器上启动)
sbin/start-yarn.sh

到此,hadoop-2.4.1配置完毕,

    * 可以通过浏览器访问:
http://192.168.1.201:50070
NameNode 'weekend01:9000' (active)
http://192.168.1.202:50070
NameNode 'weekend02:9000' (standby)
* 验证HDFS HA
首先向hdfs上传一个文件
hadoop fs -put /etc/profile /profile
hadoop fs -ls /
然后再kill掉active的NameNode
kill -9 <pid of NN>
通过浏览器访问:http://192.168.1.202:50070
NameNode 'weekend02:9000' (active)
这个时候weekend02上的NameNode变成了active
在执行命令:
hadoop fs -ls /
-rw-r--r-- 3 root supergroup 1926 2014-02-06 15:36 /profile
刚才上传的文件依然存在!!!
手动启动那个挂掉的NameNode
sbin/hadoop-daemon.sh start namenode
通过浏览器访问:http://192.168.1.201:50070
NameNode 'weekend01:9000' (standby) * 验证YARN:
运行一下hadoop提供的demo中的WordCount程序:
hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.4.1.jar wordcount /profile /out

OK,大功告成!!!

测试集群工作状态的一些指令 :

* bin/hdfs dfsadmin -report	: 查看hdfs的各节点状态信息

* bin/hdfs haadmin -getServiceState nn1:获取一个namenode节点的HA状态

* sbin/hadoop-daemon.sh start namenode : 单独启动一个namenode进程

* ./hadoop-daemon.sh start zkfc :单独启动一个zkfc进程

不在折腾----hadoop-2.4.1完全分布式集群搭建的更多相关文章

  1. 布式实时日志系统(三) 环境搭建之centos 6.4下hadoop 2.5.2完全分布式集群搭建最全资料

    最近公司业务数据量越来越大,以前的基于消息队列的日志系统越来越难以满足目前的业务量,表现为消息积压,日志延迟,日志存储日期过短,所以,我们开始着手要重新设计这块,业界已经有了比较成熟的流程,即基于流式 ...

  2. Hadoop上路-01_Hadoop2.3.0的分布式集群搭建

    一.配置虚拟机软件 下载地址:https://www.virtualbox.org/wiki/downloads 1.虚拟机软件设定 1)进入全集设定 2)常规设定 2.Linux安装配置 1)名称类 ...

  3. hadoop伪分布式集群搭建与安装(ubuntu系统)

    1:Vmware虚拟软件里面安装好Ubuntu操作系统之后使用ifconfig命令查看一下ip; 2:使用Xsheel软件远程链接自己的虚拟机,方便操作.输入自己ubuntu操作系统的账号密码之后就链 ...

  4. Hadoop分布式集群搭建

    layout: "post" title: "Hadoop分布式集群搭建" date: "2017-08-17 10:23" catalog ...

  5. 阿里云ECS服务器部署HADOOP集群(二):HBase完全分布式集群搭建(使用外置ZooKeeper)

    本篇将在阿里云ECS服务器部署HADOOP集群(一):Hadoop完全分布式集群环境搭建的基础上搭建,多添加了一个 datanode 节点 . 1 节点环境介绍: 1.1 环境介绍: 服务器:三台阿里 ...

  6. 阿里云ECS服务器部署HADOOP集群(三):ZooKeeper 完全分布式集群搭建

    本篇将在阿里云ECS服务器部署HADOOP集群(一):Hadoop完全分布式集群环境搭建的基础上搭建,多添加了一个 datanode 节点 . 1 节点环境介绍: 1.1 环境介绍: 服务器:三台阿里 ...

  7. Hadoop完全分布式集群搭建

    Hadoop的运行模式 Hadoop一般有三种运行模式,分别是: 单机模式(Standalone Mode),默认情况下,Hadoop即处于该模式,使用本地文件系统,而不是分布式文件系统.,用于开发和 ...

  8. 大数据之Hadoop完全分布式集群搭建

    1.准备阶段 1.1.新建三台虚拟机 Hadoop完全分市式集群是典型的主从架构(master-slave),一般需要使用多台服务器来组建.我们准备3台服务器(关闭防火墙.静态IP.主机名称).如果没 ...

  9. 基于Hadoop 2.2.0的高可用性集群搭建步骤(64位)

    内容概要: CentSO_64bit集群搭建, hadoop2.2(64位)编译,安装,配置以及测试步骤 新版亮点: 基于yarn计算框架和高可用性DFS的第一个稳定版本. 注1:官网只提供32位re ...

  10. Hadoop分布式集群搭建hadoop2.6+Ubuntu16.04

    前段时间搭建Hadoop分布式集群,踩了不少坑,网上很多资料都写得不够详细,对于新手来说搭建起来会遇到很多问题.以下是自己根据搭建Hadoop分布式集群的经验希望给新手一些帮助.当然,建议先把HDFS ...

随机推荐

  1. 手机APP功能测试经验分享2016.06.06

    1.登录时,Android和IOS同样的操作,提示信息不一致: 2.注册等页面切换成横屏容易不兼容.把内存卡去掉,再发送图片.音频.视频容易出错. 3.Android和IOS同样的功能,同样的原型图, ...

  2. AC6102 DDR2测试工程

    AC6102 DDR2测试工程 本文档介绍AC6102上DDR2存储器基于Verilog代码的测试过程.AC6102上使用了2片16bit的DDR2存储器组成了32bit的硬件总线.虽然是32bit硬 ...

  3. HttpClient 版本变化 转载

    转载地址:http://my.oschina.net/u/577453/blog/173724 最近用到了HttpClient写爬虫,可能我有新版本强迫症,老是喜欢用新版本的东西(虽说新版本不一定好用 ...

  4. 脚本调用脚本时.与bash的差别

    在做项目时,发现脚本调用脚本时,会意外退出任务. 下面的脚本是父脚本: #!/bin/bash . ./data/child.sh echo 123sds echo "45gfdg" ...

  5. Android守护进程

    这几天,一位做Android的朋友和我探讨了一个问题:因为业务需求的原因,在自己的App长时间不使用被kill掉之后,如何让它再重新运行起来. 虽然,我本身很排斥这种做法,有点类似“流氓软件”的行为, ...

  6. jquery做表格变色效果-demo

    第一步:写html代码部分: <table style="width:300px;"> <tr><td>1</td></tr& ...

  7. IOS监听屏幕状态

    一.定义两个宏   //锁屏通知 #define NotificationOff CFSTR("com.apple.springboard.lockcomplete")   //解 ...

  8. sprintf、fprintf和printf这三个函数

    都是把格式好的字符串输出,只是输出的目标不一样:1 printf,是把格式字符串输出到标准输出(一般是屏幕,可以重定向).2 sprintf,是把格式字符串输出到指定字符串中,所以参数比printf多 ...

  9. [poj2182] Lost Cows (线段树)

    线段树 Description N (2 <= N <= 8,000) cows have unique brands in the range 1..N. In a spectacula ...

  10. laravel的配置文件

    app/config 中的配置说明   1 在 app/config 文件夹中经常配置的一般有两个文件:app.php 和 database.php 两个文件,他们一个是配置项目杂项的.一个是配置数据 ...