1827: [Usaco2010 Mar]gather 奶牛大集会

Time Limit: 1 Sec  Memory Limit: 64 MB
Submit: 793  Solved: 354
[Submit][Status][Discuss]

Description

Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会。当然,她会选择最方便的地点来举办这次集会。每个奶牛居住在 N(1<=N<=100,000) 个农场中的一个,这些农场由N-1条道路连接,并且从任意一个农场都能够到达另外一个农场。道路i连接农场A_i和B_i(1 <= A_i <=N; 1 <= B_i <= N),长度为L_i(1 <= L_i <= 1,000)。集会可以在N个农场中的任意一个举行。另外,每个牛棚中居住者C_i(0 <= C_i <= 1,000)只奶牛。在选择集会的地点的时候,Bessie希望最大化方便的程度(也就是最小化不方便程度)。比如选择第X个农场作为集会地点,它的不方便程度是其它牛棚中每只奶牛去参加集会所走的路程之和,(比如,农场i到达农场X的距离是20,那么总路程就是C_i*20)。帮助Bessie找出最方便的地点来举行大集会。 考虑一个由五个农场组成的国家,分别由长度各异的道路连接起来。在所有农场中,3号和4号没有奶牛居住。 

Input

第一行:一个整数N * 第二到N+1行:第i+1行有一个整数C_i * 第N+2行到2*N行,第i+N+1行为3个整数:A_i,B_i和L_i。

Output

* 第一行:一个值,表示最小的不方便值。

Sample Input

5
1
1
0
0
2
1 3 1
2 3 2
3 4 3
4 5 3

Sample Output

15

  先求每个点的子树点数
  然后再求设根节点为集合点的大小
  然后一路搜下去,更新权值
  感觉又可以解决一类问题了。。
  

 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath> #define maxn 100001 using namespace std; long long tot=,w[maxn],f[maxn],ans; inline int in()
{
int x=;char ch=getchar();
while(ch<''||ch>'')ch=getchar();
while(ch<=''&&ch>='')x=x*+ch-'',ch=getchar();
return x;
} struct ed{
int to,c,last;
}edge[maxn*]; int last[maxn],cnt=,a[maxn]; bool vis[maxn]; void add(int u,int v,int c)
{
edge[++cnt].to=v,edge[cnt].c=c,edge[cnt].last=last[u],last[u]=cnt;
edge[++cnt].to=u,edge[cnt].c=c,edge[cnt].last=last[v],last[v]=cnt;
} void DP(int pos)
{
w[pos]=a[pos];vis[pos]=;
for(int i=last[pos];i;i=edge[i].last)
{
int u=edge[i].to;
if(vis[u])continue;
DP(u);
w[pos]+=w[u];
f[pos]+=w[u]*edge[i].c+f[u];
}
} void dfs(int poi,long long val)
{
vis[poi]=;ans=min(ans,val);
for(int i=last[poi];i;i=edge[i].last)
if(!vis[edge[i].to])
dfs(edge[i].to,val+(tot-*w[edge[i].to])*edge[i].c);
} int main()
{
int n,u,v,c;
n=in();
for(int i=;i<=n;i++)a[i]=in(),tot+=a[i];
for(int i=;i<n;i++)
{
u=in();v=in();c=in();
add(u,v,c);
}
DP();ans=f[];
memset(vis,,sizeof(vis));
dfs(,f[]);
printf("%lld",ans);
return ;
}

【树形DP/搜索】BZOJ 1827: [Usaco2010 Mar]gather 奶牛大集会的更多相关文章

  1. BZOJ 1827: [Usaco2010 Mar]gather 奶牛大集会( dp + dfs )

    选取任意一个点为root , size[ x ] 表示以 x 为根的子树的奶牛数 , dp一次计算出size[ ] && 选 root 为集会地点的不方便程度 . 考虑集会地点由 x ...

  2. BZOJ 1827: [Usaco2010 Mar]gather 奶牛大集会 树形DP

    [Usaco2010 Mar]gather 奶牛大集会 Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来举办这次集会.每个奶牛居住在 N(1 ...

  3. BZOJ 1827: [Usaco2010 Mar]gather 奶牛大集会

    Description Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来举办这次集会.每个奶牛居住在 N(1<=N<=100,0 ...

  4. BZOJ 1827 [Usaco2010 Mar]gather 奶牛大集会(树形DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1827 [题目大意] 给出一棵有点权和边权的树, 请确定一个点,使得每个点到这个点的距离 ...

  5. bzoj 1827: [Usaco2010 Mar]gather 奶牛大集会【树形dp】

    不能用read会TLE!!不能用read会TLE!!不能用read会TLE!! 一开始以为要维护每个点,线段树写了好长(还T了-- 首先dfs一遍,求出点1为集会地点的答案,处理处val[u]为以1为 ...

  6. BZOJ 1827: [Usaco2010 Mar]gather 奶牛大集会 树形DP + 带权重心

    Description Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来举办这次集会.每个奶牛居住在 N(1<=N<=100,0 ...

  7. 【BZOJ】1827: [Usaco2010 Mar]gather 奶牛大集会(树形dp)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1827 仔细想想就好了,, 每个点维护两个值,一个是子树的费用,一个是除了子树和自己的费用.都可以用d ...

  8. 【BZOJ】1827: [Usaco2010 Mar]gather 奶牛大集会

    [算法]树型DP||树的重心(贪心) [题解] 两遍DFS,第一次得到所有节点子树的路径和,第二次给出除了该子树外其它部分的路径和,时时计算答案. long long!!! #include<c ...

  9. 【BZOJ1827】[Usaco2010 Mar]gather 奶牛大集会 树形DP

    [BZOJ][Usaco2010 Mar]gather 奶牛大集会 Description Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来 ...

随机推荐

  1. C#实现自定义事件,用于监视变量变化

    很多时候我们需要程序具有一种功能,就是当满足某一条件时触发某个动作,使用C#的事件机制就可以达到这个目的下面的例子是一个很好的演示. 这段代码实现了对一个变量的监视,一旦变量发生改变,就触发动作 定义 ...

  2. text-overflow:ellipsis; 使用

    ul li{ height:25px; line-height:25px; width:200px; overflow:hidden; white-space:nowrap;-moz-text-ove ...

  3. blogs

    http://blogs.msdn.com/b/tess/archive/2008/02/04/net-debugging-demos-information-and-setup-instructio ...

  4. [老老实实学WCF] 第六篇 元数据交换

    老老实实学WCF 第六篇 元数据交换 通过前两篇的学习,我们了解了WCF通信的一些基本原理,我们知道,WCF服务端和客户端通过共享元数据(包括服务协定.服务器终结点信息)在两个 终结点上建立通道从而进 ...

  5. IOS 后台执行

    在IOS后台执行是本文要介绍的内容,大多数应用程序进入后台状态不久后转入暂停状态.在这种状态下,应用程序不执行任何代码,并有可能在任意时候从内存中删除.应用程序提供特定的服务,用户可以请求后台执行时间 ...

  6. 关于datatable转换datatime类型的问题

    今天转换datatable 属性值的时候出错: DataTable dt_1 = new DataTable();dt_1 = new BLL.auction().GetList_pmh(top, _ ...

  7. [Guava源码分析]Ordering:排序

    我的技术博客经常被流氓网站恶意爬取转载.请移步原文:http://www.cnblogs.com/hamhog/p/3876466.html,享受整齐的排版.有效的链接.正确的代码缩进.更好的阅读体验 ...

  8. ▲教你如何轻易的做linux计划任务▲——小菜一碟

    一次性计划任务的安排: at :安排作业在某一时刻执行一次(一般都是用它) batch:安排作业在系统负载不重时执行一次 第一步: #service atd start  开启一次性计划任务   at ...

  9. winform Config文件操作

    using System;using System.Collections.Generic;using System.Text;using System.Xml;using System.Config ...

  10. Gulp vs Grunt 前端构建工具对比

    Gulp vs Grunt 前端工程的构建工具对比 1. Grunt -> Gulp 早些年提到构建工具,难免会让人联想到历史比较悠久的Make,Ant,以及后来为了更方便的构建结构类似的Jav ...