这个问题并计算质数了一下相间隔似的。思想上一致。

注意问题:

1 i 可能 大于或等于j -- 这里上传。小心阅读题意,我没有说这个地方不能保证。需要特殊处理

2 计算过程中可能溢出,的整数大于最大值,需要使用long long

关于效率和时间问题:

1 能够使用数组保存中间结果,这样执行快了。内存消耗大了,

2 能够不使用中间数组。 这样执行肯定比較慢了。可是内存消耗小,一样能够AC的。

全部没有个标准吧。看情况而定。假设须要速度就添加数组,假设省内存就不使用数组吧。

这样的题目一般都使用数组吧。

我这里使用数组。

參考博客:http://tausiq.wordpress.com/2008/12/09/uva-100-the-3n-1-problem/

题目例如以下:

Background

Problems in Computer Science are often classified as belonging to a certain class of problems (e.g., NP, Unsolvable, Recursive). In this problem you will be analyzing a property of an algorithm whose classification is not known for all possible inputs.

The Problem

Consider the following algorithm:


1. input n
2. print n 3. if n = 1 then STOP 4. if n is odd then 5. else 6. GOTO 2

Given the input 22, the following sequence of numbers will be printed 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

It is conjectured that the algorithm above will terminate (when a 1 is printed) for any integral input value. Despite the simplicity of the algorithm, it is unknown whether this conjecture is true. It has been verified, however, for all integers
n such that 0 < n < 1,000,000 (and, in fact, for many more numbers than this.)

Given an input n, it is possible to determine the number of numbers printed (including the 1). For a given
n this is called the cycle-length of n. In the example above, the cycle length of 22 is 16.

For any two numbers i and j you are to determine the maximum cycle length over all numbers between
i and j.

The Input

The input will consist of a series of pairs of integers i and j, one pair of integers per line. All integers will be less than 1,000,000 and greater than 0.

You should process all pairs of integers and for each pair determine the maximum cycle length over all integers between and including
i and j.

You can assume that no operation overflows a 32-bit integer.

The Output

For each pair of input integers i and j you should output
i
, j, and the maximum cycle length for integers between and including
i and j. These three numbers should be separated by at least one space with all three numbers on one line and with one line of output for each line of input. The integers
i and j must appear in the output in the same order in which they appeared in the input and should be followed by the maximum cycle length (on the same line).

Sample Input

1 10
100 200
201 210
900 1000

Sample Output

1 10 20
100 200 125
201 210 89
900 1000 174

注意好上述问题之后就比較好AC了。

我以下程序是写了个类,分开多个函数,能够看的逻辑十分清晰的。当然/2和*2能够改动成>>1和<<1操作。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <vector>
#include <stdio.h> using namespace std; static int table[1000000] = {0};//={-1}不正常工作。仅仅能清零 class ThreeNOne
{
public:
const static int MAX_N = 1000000;
ThreeNOne()
{
table[1] = 1;
for (int i = 2; i < 1000000; i*=2)
{
table[i] = table[i/2] + 1;
}
initTbl(table);
} int checkTbl(int tbl[], long long i)//i一定要为longlong,int会溢出
{
if (i < MAX_N && 0 != tbl[i]) return tbl[i];
if (i % 2)
{
if (i < MAX_N) tbl[i] = checkTbl(tbl, i * 3 + 1) + 1;
else return checkTbl(tbl, i * 3 + 1) + 1;
}
else
{
if (i < MAX_N) tbl[i] = checkTbl(tbl, i / 2) + 1;
else return checkTbl(tbl, i / 2) + 1;
}
return tbl[i];
} void initTbl(int tbl[])
{
for (int i = 3; i < 1000000; i++)
{
checkTbl(tbl, i);
}
} void The3n1problem()
{
int i = 0, j = 0;
while (cin>>i>>j)
{
pair<int, int> t = minmax(i, j);//区间给定不一定是i<=j的,细致审题
int ans = 0;
for (long long d = t.first; d <= t.second; d++)
{
ans = max(ans, table[d]);
//错误:ans += table[d];细致读题,不是和。而是maximum
}
cout<<i<<' '<<j<<' '<<ans<<endl;
}
}
};
int main()
{
ThreeNOne tno;
tno.The3n1problem();
return 0;
}

版权声明:笔者心脏靖。景空间地址:http://blog.csdn.net/kenden23/。可能不会在未经作者同意转载。

UVa - The 3n + 1 problem 解读的更多相关文章

  1. UVa 100 - The 3n + 1 problem(函数循环长度)

    题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...

  2. 【转】UVa Problem 100 The 3n+1 problem (3n+1 问题)——(离线计算)

    // The 3n+1 problem (3n+1 问题) // PC/UVa IDs: 110101/100, Popularity: A, Success rate: low Level: 1 / ...

  3. PC/UVa 题号: 110101/100 The 3n+1 problem (3n+1 问题)

     The 3n + 1 problem  Background Problems in Computer Science are often classified as belonging to a ...

  4. UVA 100 - The 3n+1 problem (3n+1 问题)

    100 - The 3n+1 problem (3n+1 问题) /* * 100 - The 3n+1 problem (3n+1 问题) * 作者 仪冰 * QQ 974817955 * * [问 ...

  5. 100-The 3n + 1 problem

    本文档下载 题目: http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_pro ...

  6. The 3n + 1 problem

    The 3n + 1 problem Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other) ...

  7. poj1207 3n+1 problem

    The 3n + 1 problem Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 60496   Accepted: 19 ...

  8. 杭电OJ——1032 The 3n + 1 problem

    The 3n + 1 problem Problem Description Problems in Computer Science are often classified as belongin ...

  9. HDU 1032 The 3n + 1 problem (这个题必须写博客)

    The 3n + 1 problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

随机推荐

  1. Android该HTTP下载

    今天学习了Android开发中比較难的一个环节,就是断点续传下载,非常多人看到这个标题就感觉头大.的确,假设没有良好的逻辑思维,这块的确非常难搞明确.以下我就将自己学到的知识和一些见解写下供那些在这个 ...

  2. hdu1506(dp减少重复计算)

    可以算出以第i个值为高度的矩形可以向左延伸left[i],向右延伸right[i]的长度 那么答案便是 (left[i] + right[i] + 1) * a[i] 的最大值 关键left[i] 和 ...

  3. Android 关于资源适配

    一. 关于图片资源 图片宽高 不要固定大小,在小屏幕和大屏幕,不同分频率上 ,採用不同的图片,这个要美工切图的. 不同的分辨率,界面的长宽比不一致,须要不同规格的图片 在drawable-hdpi,d ...

  4. .NET/C# RabbitMQ

    本系列文章均来自官网原文,属于个人翻译,如有雷同,权当个人归档,忽喷. RabitMQ 是一个消息中间件,其实就是从消息生产者那里接受消息,然后发送给消息消费者.在这个传输过程中,可以定义一些缓存,持 ...

  5. SQL Server :理解IAM 页

    原文:SQL Server :理解IAM 页 在以前的文章里,我们讨论了数据页,GAM和SGAM,还有PFS页.今天我们一起来讨论下索引分配映射(Index Allocation Map:IAM)页. ...

  6. poj 2586 Y2K Accounting Bug (贪心)

    Y2K Accounting Bug Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8678   Accepted: 428 ...

  7. HDU 1394 Minimum Inversion Number (数据结构-段树)

    Minimum Inversion Number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java ...

  8. Js常用技巧

    摘录:http://crasywind.blog.163.com/blog/static/7820316920091011643149/ js 常用技巧 1. on contextmenu=" ...

  9. C++习题 复数类--重载运算符+

    Description 定义一个复数类Complex,重载运算符"+",使之能用于复数的加法运算.将运算符函数重载为非成员.非友元的普通函数.编写程序,求两个复数之和. Input ...

  10. UVA 12103 - Leonardo&#39;s Notebook(数论置换群)

    UVA 12103 - Leonardo's Notebook 题目链接 题意:给定一个字母置换B.求是否存在A使得A^2=B 思路:随意一个长为 L 的置换的k次幂,会把自己分裂成gcd(L,k) ...