UVa - The 3n + 1 problem 解读
这个问题并计算质数了一下相间隔似的。思想上一致。
注意问题:
1 i 可能 大于或等于j -- 这里上传。小心阅读题意,我没有说这个地方不能保证。需要特殊处理
2 计算过程中可能溢出,的整数大于最大值,需要使用long long
关于效率和时间问题:
1 能够使用数组保存中间结果,这样执行快了。内存消耗大了,
2 能够不使用中间数组。 这样执行肯定比較慢了。可是内存消耗小,一样能够AC的。
全部没有个标准吧。看情况而定。假设须要速度就添加数组,假设省内存就不使用数组吧。
这样的题目一般都使用数组吧。
我这里使用数组。
參考博客:http://tausiq.wordpress.com/2008/12/09/uva-100-the-3n-1-problem/
题目例如以下:
Background
Problems in Computer Science are often classified as belonging to a certain class of problems (e.g., NP, Unsolvable, Recursive). In this problem you will be analyzing a property of an algorithm whose classification is not known for all possible inputs.
The Problem
Consider the following algorithm:
1. input n
2. print n 3. if n = 1 then STOP 4. if n is odd then5. else
6. GOTO 2
Given the input 22, the following sequence of numbers will be printed 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
It is conjectured that the algorithm above will terminate (when a 1 is printed) for any integral input value. Despite the simplicity of the algorithm, it is unknown whether this conjecture is true. It has been verified, however, for all integers
n such that 0 < n < 1,000,000 (and, in fact, for many more numbers than this.)
Given an input n, it is possible to determine the number of numbers printed (including the 1). For a given
n this is called the cycle-length of n. In the example above, the cycle length of 22 is 16.
For any two numbers i and j you are to determine the maximum cycle length over all numbers between
i and j.
The Input
The input will consist of a series of pairs of integers i and j, one pair of integers per line. All integers will be less than 1,000,000 and greater than 0.
You should process all pairs of integers and for each pair determine the maximum cycle length over all integers between and including
i and j.
You can assume that no operation overflows a 32-bit integer.
The Output
For each pair of input integers i and j you should output
i, j, and the maximum cycle length for integers between and including
i and j. These three numbers should be separated by at least one space with all three numbers on one line and with one line of output for each line of input. The integers
i and j must appear in the output in the same order in which they appeared in the input and should be followed by the maximum cycle length (on the same line).
Sample Input
1 10
100 200
201 210
900 1000
Sample Output
1 10 20
100 200 125
201 210 89
900 1000 174
注意好上述问题之后就比較好AC了。
我以下程序是写了个类,分开多个函数,能够看的逻辑十分清晰的。当然/2和*2能够改动成>>1和<<1操作。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <vector>
#include <stdio.h> using namespace std; static int table[1000000] = {0};//={-1}不正常工作。仅仅能清零 class ThreeNOne
{
public:
const static int MAX_N = 1000000;
ThreeNOne()
{
table[1] = 1;
for (int i = 2; i < 1000000; i*=2)
{
table[i] = table[i/2] + 1;
}
initTbl(table);
} int checkTbl(int tbl[], long long i)//i一定要为longlong,int会溢出
{
if (i < MAX_N && 0 != tbl[i]) return tbl[i];
if (i % 2)
{
if (i < MAX_N) tbl[i] = checkTbl(tbl, i * 3 + 1) + 1;
else return checkTbl(tbl, i * 3 + 1) + 1;
}
else
{
if (i < MAX_N) tbl[i] = checkTbl(tbl, i / 2) + 1;
else return checkTbl(tbl, i / 2) + 1;
}
return tbl[i];
} void initTbl(int tbl[])
{
for (int i = 3; i < 1000000; i++)
{
checkTbl(tbl, i);
}
} void The3n1problem()
{
int i = 0, j = 0;
while (cin>>i>>j)
{
pair<int, int> t = minmax(i, j);//区间给定不一定是i<=j的,细致审题
int ans = 0;
for (long long d = t.first; d <= t.second; d++)
{
ans = max(ans, table[d]);
//错误:ans += table[d];细致读题,不是和。而是maximum
}
cout<<i<<' '<<j<<' '<<ans<<endl;
}
}
};
int main()
{
ThreeNOne tno;
tno.The3n1problem();
return 0;
}
版权声明:笔者心脏靖。景空间地址:http://blog.csdn.net/kenden23/。可能不会在未经作者同意转载。
UVa - The 3n + 1 problem 解读的更多相关文章
- UVa 100 - The 3n + 1 problem(函数循环长度)
题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...
- 【转】UVa Problem 100 The 3n+1 problem (3n+1 问题)——(离线计算)
// The 3n+1 problem (3n+1 问题) // PC/UVa IDs: 110101/100, Popularity: A, Success rate: low Level: 1 / ...
- PC/UVa 题号: 110101/100 The 3n+1 problem (3n+1 问题)
The 3n + 1 problem Background Problems in Computer Science are often classified as belonging to a ...
- UVA 100 - The 3n+1 problem (3n+1 问题)
100 - The 3n+1 problem (3n+1 问题) /* * 100 - The 3n+1 problem (3n+1 问题) * 作者 仪冰 * QQ 974817955 * * [问 ...
- 100-The 3n + 1 problem
本文档下载 题目: http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_pro ...
- The 3n + 1 problem
The 3n + 1 problem Time Limit : 2000/1000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other) ...
- poj1207 3n+1 problem
The 3n + 1 problem Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 60496 Accepted: 19 ...
- 杭电OJ——1032 The 3n + 1 problem
The 3n + 1 problem Problem Description Problems in Computer Science are often classified as belongin ...
- HDU 1032 The 3n + 1 problem (这个题必须写博客)
The 3n + 1 problem Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...
随机推荐
- Fedora16 安装相关
安装BCM4312无线网卡驱动 Linux系统BCM4312无线网卡驱动的安装 联想Y450 Linux系统 无线网卡驱动安装 准备工作: Broadcom官网驱动下载地址 http://www.br ...
- 实现Timeline
Redis实现Timeline 上回写了使用Redis实现关注关系,这次说说使用Redis实现Timeline. Timeline的实现一般有推模式.拉模式.推拉结合这几种.推模式:某人发布内容之后推 ...
- Linux 命令 快捷命令综合
FTP开机启动 启动要让FTP每次开机自动启动,运行命令: chkconfig --level 35 vsftpd on linux 关机 1.halt linux 注销 1.logout linu ...
- Linux通过使用pdb简单调试python计划
python自带的调试工具库:pdb # -*- coding:utf-8 -*- def func(num): s = num * 10 return s if __name__ == '__mai ...
- Windows Phone开发(34):路径标记语法
原文:Windows Phone开发(34):路径标记语法 如果你觉得前面所讨论的绘制各种几何图形的方法过于复杂,那么,今天我们也来一次"减负"吧.当然,我们是很轻松的,本教程是不 ...
- 使用zzip和minizip解压缩文件
#include <zzip/zzip.h> #include <zlib.h> #include <zip.h> #include <unzip.h> ...
- PHP --字符串编码转换(自动识别原编码)
/** * 对数据进行编码转换 * @param array/string $data 数组 * @param string $output 转换后的编码 */ function array_icon ...
- FlexPaper二次开发问题及搜索高亮显示
原文:FlexPaper二次开发问题及搜索高亮显示 最近有个需求,做一个IT知识库,类似于文库,说到文库肯定会用到在线浏览文档了,所有在网上翻阅了一下类似豆丁的在线浏览器插件的资料,将其进行了二次开发 ...
- Linux System Programming note 8 ——File and Directory Management
1. The Stat Family #include <sys/types.h> #include <sys/stat.h> #include <unistd.h> ...
- Java 的布局管理器GridBagLayout的使用方法(转)
GridBagLayout是java里面最重要的布局管理器之一,可以做出很复杂的布局,可以说GridBagLayout是必须要学好的的, GridBagLayout 类是一个灵活的布局管理器,它不要求 ...
5. else
6. GOTO 2