去年底入手一台联想Y7000P,配置了Nvidia GeForce GTX 1660 Ti GPU,GPU内存6G,但是因为有GPU服务器,所以一直没有在这台笔记本上跑过模型,如今经过一番折腾,终于在此笔记本上搭建好了环境,并成功使用GPU训练了一些模型,本篇记录了环境搭建的过程。

注意:

1、CUDA和CUDNN不是必须另外安装的(当然装了也没关系),除非你要开发CUDA程序,否则如果只是用pytorch等框架,则只需要使用 CUDA 的动态链接库,而这部分在使用conda安装pytorch的时候会一起安装好,也就是说使用conda 安装pytorch之后,无需另外单独安装CUDA和CUDNN,并且你会发现在本地库中有一个cudatoolkit 的包被安装了。但是,如果要为 Pytorch 添加 CUDA 的相关扩展时(参考:https://tutorials.pytorch.kr/advanced/cpp_extension.html ),会对编写的 CUDA 相关程序进行编译等操作,那么就需另外单独安装CUDA和CUDNN.

2、pytorch1.2.0版本在使用tensorboard的时候有很多坑,比如网络图无法正常显示,所以建议安装1.2.0以上的版本,后来我装了最新的稳定版1.5.0,对应的torchvision是0.6.0

一、检查你的GPU

首先确保你的电脑有Nvidia的GPU,并且支持CUDA,可以参考这个网址

二、安装vs2017(可选)

Visual Studio 2017 Community下载地址

安装选项:勾选“C++的桌面开发”,右边的列表再额外勾选一个SDK,这个SDK是在后续测试CUDA样例的时候要用到的,如下图:

三、安装CUDA10.0(可选)

下载

打开网站:CUDA10.0

按照下图选择对应的选项后,点击下载:

安装

双击下载的文件,选择自定义安装,如果之前你已经安装过显卡驱动并且兼容CUDA10.0,可以在这里去掉显卡驱动的勾选,兼容情况参考这里,截图如下:

另外,去掉Visual studio integration的勾选:

后面默认选择下一步,等待安装完成。

测试

命令行测试:
nvcc -V

输出以下信息即成功:

样例测试:

以管理员方式打开vs2017,然后加载bandwidthTest解决方案,路径如下:

C:\ProgramData\NVIDIA Corporation\CUDA Samples\v10.0\1_Utilities\bandwidthTest\bandwidthTest_vs2017.vcxproj

右键点击bandwidthTest,选择生成,等待生成结果成功。此时在路径:C:\ProgramData\NVIDIA Corporation\CUDA Samples\v10.0\bin\win64\Debug 下,会出现一个bandwidthTest.exe文件,在cmd中执行,结果为PASS则为通过测试。

另外还有一个deviceQuery的样例,其测试过程同上。

四、安装CUDNN(可选)

打开CUDNN的网址

如下图,选择后会下载:

下载文件解压缩出来,然后根据下面的步骤操作(图中拿10.2举例的,因为是官方的教程):

五、安装pytorch

添加conda的清华镜像源

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main

添加额外的pytorch源

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch

安装

conda config --set show_channel_urls yes
conda install pytorch=1.5.0 torchvision=0.6.0 cudatoolkit=10.1

到此安装就完成了。

ok,本篇就这么多内容啦~,感谢阅读O(∩_∩)O。

深度学习环境搭建:window10+CUDA10.0+CUDNN+pytorch1.2.0的更多相关文章

  1. 深度学习环境搭建:Tensorflow1.4.0+Ubuntu16.04+Python3.5+Cuda8.0+Cudnn6.0

    目录 深度学习环境搭建:Tensorflow1.4.0+Ubuntu16.04+Python3.5+Cuda8.0+Cudnn6.0 Reference 硬件说明: 软件准备: 1. 安装Ubuntu ...

  2. 保姆级教程——Ubuntu16.04 Server下深度学习环境搭建:安装CUDA8.0,cuDNN6.0,Bazel0.5.4,源码编译安装TensorFlow1.4.0(GPU版)

    写在前面 本文叙述了在Ubuntu16.04 Server下安装CUDA8.0,cuDNN6.0以及源码编译安装TensorFlow1.4.0(GPU版)的亲身经历,包括遇到的问题及解决办法,也有一些 ...

  3. Win10+RTX2080深度学习环境搭建:tensorflow、mxnet、pytorch、caffe

    目录 准备工作 设置conda国内镜像源 conda 深度学习环境 tensorflow.mxnet.pytorch安装 tensorflow mxnet pytorch Caffe安装 配置文件修改 ...

  4. [AI开发]centOS7.5上基于keras/tensorflow深度学习环境搭建

    这篇文章详细介绍在centOS7.5上搭建基于keras/tensorflow的深度学习环境,该环境可用于实际生产.本人现在非常熟练linux(Ubuntu/centOS/openSUSE).wind ...

  5. 深度学习环境搭建部署(DeepLearning 神经网络)

    工作环境 系统:Ubuntu LTS 显卡:GPU NVIDIA驱动:410.93 CUDA:10.0 Python:.x CUDA以及NVIDIA驱动安装,详见https://www.cnblogs ...

  6. linux系统下深度学习环境搭建和使用

    作为一个AI工程师,对Linux的一些技能的掌握也能从一定层面反应工程师的资深水平. 要求1:基于SSH的远程访问(本篇文章) 能用一台笔记本电脑,远程登陆一台linux服务器 能随时使用笔记本电脑启 ...

  7. Ubuntu深度学习环境搭建 tensorflow+pytorch

    目前电脑配置:Ubuntu 16.04 + GTX1080显卡 配置深度学习环境,利用清华源安装一个miniconda环境是非常好的选择.尤其是今天发现conda install -c menpo o ...

  8. 深度学习环境搭建(ubuntu16.04+Titan Xp安装显卡驱动+Cuda9.0+cudnn+其他软件)

    一.硬件环境 ubuntu 16.04LTS + windows10 双系统 NVIDIA TiTan XP 显卡(12G) 二.软件环境 搜狗输入法 下载地址 显卡驱动:LINUX X64 (AMD ...

  9. 深度学习环境搭建(CUDA9.0 + cudnn-9.0-linux-x64-v7 + tensorflow_gpu-1.8.0 + keras)

    关于计算机的硬件配置说明 推荐配置 如果您是高校学生或者高级研究人员,并且实验室或者个人资金充沛,建议您采用如下配置: 主板:X299型号或Z270型号 CPU: i7-6950X或i7-7700K ...

随机推荐

  1. networkx学习与攻击转移图可视化

    接到一个任务,将攻击转移矩阵进行可视化,生成攻击转移概率图,便尝试用python实现一下. 查阅资料,看大家都在用networkx和matplotlib进行可视化,便边学边做,记录一下学习笔记. 任务 ...

  2. std::forward和std::move

    std::forward完美转发 保证参数原来的属性(用在template的参数是引用的时候):左值引用在被转发之后仍然保持左值属性,右值引用在被转发之后依然保持右值属性 void show(int& ...

  3. c++存储区

    全局变量与静态变量区.常量区.局部变量区(栈).动态存储区(堆).自由存储区 1.全局变量与静态变量区->存放全局变量.静态变量,程序运行结束后释放 2.常量区->存放常量 3.局部变量区 ...

  4. 使用docker-compose编写常规的lnmp容器,pdo连接mysql失败。

    问题的核心是yii2 是通过pdo的方式去连接数据的.但是我们通过容器去搭建lnmp环境时,nginx , php , mysql 这三个服务是独立的三个容器,彼此隔离.所以在yii2中连接mysql ...

  5. Centos7_搭建暗网网站

    Tor运行原理 请求方需要使用:洋葱浏览器(Tor Browser)来对暗网网站进行访问 响应放需要使用:Tor协议的的Hidden_service 搭建步骤 更新YUM源: rpm -Uvh htt ...

  6. Python openpyxl使用操作和openpyxl操作

    前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取htt ...

  7. 在Python中该如何实现Java的重写与重载

    前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者:清风python PS:如有需要Python学习资料的小伙伴可以加点击 ...

  8. 如何教零基础的人认识Python

    前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者: 编程派 PS:如有需要Python学习资料的小伙伴可以加点击下方链接 ...

  9. Daily Scrum 1/7/2015

    Process: Zhaoyang: Do some code intergration and test the total feature in the IOS APP. Yandong: Cod ...

  10. X - Skyscrapers (hard version) CodeForces - 1313C2

    题目大意:n个高楼,每个楼最高为mi,要求,第i个楼左边和右边不能有同时比它高的楼.让你求最在n个楼总和最高的情况下,每个楼的高度. 题解:用单调栈来做,n个楼的高度要么是单调递减,要么是单调递增,要 ...