去年底入手一台联想Y7000P,配置了Nvidia GeForce GTX 1660 Ti GPU,GPU内存6G,但是因为有GPU服务器,所以一直没有在这台笔记本上跑过模型,如今经过一番折腾,终于在此笔记本上搭建好了环境,并成功使用GPU训练了一些模型,本篇记录了环境搭建的过程。

注意:

1、CUDA和CUDNN不是必须另外安装的(当然装了也没关系),除非你要开发CUDA程序,否则如果只是用pytorch等框架,则只需要使用 CUDA 的动态链接库,而这部分在使用conda安装pytorch的时候会一起安装好,也就是说使用conda 安装pytorch之后,无需另外单独安装CUDA和CUDNN,并且你会发现在本地库中有一个cudatoolkit 的包被安装了。但是,如果要为 Pytorch 添加 CUDA 的相关扩展时(参考:https://tutorials.pytorch.kr/advanced/cpp_extension.html ),会对编写的 CUDA 相关程序进行编译等操作,那么就需另外单独安装CUDA和CUDNN.

2、pytorch1.2.0版本在使用tensorboard的时候有很多坑,比如网络图无法正常显示,所以建议安装1.2.0以上的版本,后来我装了最新的稳定版1.5.0,对应的torchvision是0.6.0

一、检查你的GPU

首先确保你的电脑有Nvidia的GPU,并且支持CUDA,可以参考这个网址

二、安装vs2017(可选)

Visual Studio 2017 Community下载地址

安装选项:勾选“C++的桌面开发”,右边的列表再额外勾选一个SDK,这个SDK是在后续测试CUDA样例的时候要用到的,如下图:

三、安装CUDA10.0(可选)

下载

打开网站:CUDA10.0

按照下图选择对应的选项后,点击下载:

安装

双击下载的文件,选择自定义安装,如果之前你已经安装过显卡驱动并且兼容CUDA10.0,可以在这里去掉显卡驱动的勾选,兼容情况参考这里,截图如下:

另外,去掉Visual studio integration的勾选:

后面默认选择下一步,等待安装完成。

测试

命令行测试:
nvcc -V

输出以下信息即成功:

样例测试:

以管理员方式打开vs2017,然后加载bandwidthTest解决方案,路径如下:

C:\ProgramData\NVIDIA Corporation\CUDA Samples\v10.0\1_Utilities\bandwidthTest\bandwidthTest_vs2017.vcxproj

右键点击bandwidthTest,选择生成,等待生成结果成功。此时在路径:C:\ProgramData\NVIDIA Corporation\CUDA Samples\v10.0\bin\win64\Debug 下,会出现一个bandwidthTest.exe文件,在cmd中执行,结果为PASS则为通过测试。

另外还有一个deviceQuery的样例,其测试过程同上。

四、安装CUDNN(可选)

打开CUDNN的网址

如下图,选择后会下载:

下载文件解压缩出来,然后根据下面的步骤操作(图中拿10.2举例的,因为是官方的教程):

五、安装pytorch

添加conda的清华镜像源

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main

添加额外的pytorch源

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch

安装

conda config --set show_channel_urls yes
conda install pytorch=1.5.0 torchvision=0.6.0 cudatoolkit=10.1

到此安装就完成了。

ok,本篇就这么多内容啦~,感谢阅读O(∩_∩)O。

深度学习环境搭建:window10+CUDA10.0+CUDNN+pytorch1.2.0的更多相关文章

  1. 深度学习环境搭建:Tensorflow1.4.0+Ubuntu16.04+Python3.5+Cuda8.0+Cudnn6.0

    目录 深度学习环境搭建:Tensorflow1.4.0+Ubuntu16.04+Python3.5+Cuda8.0+Cudnn6.0 Reference 硬件说明: 软件准备: 1. 安装Ubuntu ...

  2. 保姆级教程——Ubuntu16.04 Server下深度学习环境搭建:安装CUDA8.0,cuDNN6.0,Bazel0.5.4,源码编译安装TensorFlow1.4.0(GPU版)

    写在前面 本文叙述了在Ubuntu16.04 Server下安装CUDA8.0,cuDNN6.0以及源码编译安装TensorFlow1.4.0(GPU版)的亲身经历,包括遇到的问题及解决办法,也有一些 ...

  3. Win10+RTX2080深度学习环境搭建:tensorflow、mxnet、pytorch、caffe

    目录 准备工作 设置conda国内镜像源 conda 深度学习环境 tensorflow.mxnet.pytorch安装 tensorflow mxnet pytorch Caffe安装 配置文件修改 ...

  4. [AI开发]centOS7.5上基于keras/tensorflow深度学习环境搭建

    这篇文章详细介绍在centOS7.5上搭建基于keras/tensorflow的深度学习环境,该环境可用于实际生产.本人现在非常熟练linux(Ubuntu/centOS/openSUSE).wind ...

  5. 深度学习环境搭建部署(DeepLearning 神经网络)

    工作环境 系统:Ubuntu LTS 显卡:GPU NVIDIA驱动:410.93 CUDA:10.0 Python:.x CUDA以及NVIDIA驱动安装,详见https://www.cnblogs ...

  6. linux系统下深度学习环境搭建和使用

    作为一个AI工程师,对Linux的一些技能的掌握也能从一定层面反应工程师的资深水平. 要求1:基于SSH的远程访问(本篇文章) 能用一台笔记本电脑,远程登陆一台linux服务器 能随时使用笔记本电脑启 ...

  7. Ubuntu深度学习环境搭建 tensorflow+pytorch

    目前电脑配置:Ubuntu 16.04 + GTX1080显卡 配置深度学习环境,利用清华源安装一个miniconda环境是非常好的选择.尤其是今天发现conda install -c menpo o ...

  8. 深度学习环境搭建(ubuntu16.04+Titan Xp安装显卡驱动+Cuda9.0+cudnn+其他软件)

    一.硬件环境 ubuntu 16.04LTS + windows10 双系统 NVIDIA TiTan XP 显卡(12G) 二.软件环境 搜狗输入法 下载地址 显卡驱动:LINUX X64 (AMD ...

  9. 深度学习环境搭建(CUDA9.0 + cudnn-9.0-linux-x64-v7 + tensorflow_gpu-1.8.0 + keras)

    关于计算机的硬件配置说明 推荐配置 如果您是高校学生或者高级研究人员,并且实验室或者个人资金充沛,建议您采用如下配置: 主板:X299型号或Z270型号 CPU: i7-6950X或i7-7700K ...

随机推荐

  1. Python爬虫系列(二):requests基础

    1.发送请求: import requests # 获取数据#r是一个 response 对象.包含请求返回的内容r = requests.get('https://github.com/timeli ...

  2. GeoGebra函数使用

    分段函数使用 输入指令: If(x < -2, x, -2 < x < 2, x², x > 2, x)

  3. 你只要5行代码,拥有你的个性二维码,用Python生成动态二维码

    如果想了解更多关于python的应用,可以私信我,或者点击下方链接自行获取,里面到资料都是免费的(http://t.cn/A6Zvjdun) 二维码满天飞,但是有没有想过Python也能制作出专属于自 ...

  4. Python - 翻译Talk Python To Me (和我聊Python) 播客

    “和我聊Python”是一个美国的聊天播客,英文名Talk Python To Me,类似于喜马拉雅的音频课程节目,只不过这个主题是编程语言Python.该节目从2015年的节目到现在,已经超过256 ...

  5. 编码理解的漫漫长路(Unicode、GBK、ISO)

    Ø 那么现在开始康康都有哪些编码方式  1.  ASCII

  6. Flutter 步骤进度组件

    ​老孟导读:最近文章更新拖后腿了,一直忙着网站改版的事情,今天总算落地了,全新的Flutter网站即将上线,敬请期待.网站目前收集197个组件的详细用法,还有150多个组件待整理. Stepper S ...

  7. BIOS时间与系统时间(windows/linux时间同步问题)

    写作动机 双系统是不少人喜欢的方式,但安装双系统之后一般会出现两个系统时间不一样的问题,刚开始用双系统的时候也没怎么在意,就是装上后在网上找找相关解决方法,复制粘贴代码完事儿.但是次数多了就有点烦了, ...

  8. 尝试用Vue.js开发网页小游戏的过程

    准备 首先去官方下载并安装VSCODE,下载地址 https://code.visualstudio.com/.安装后打开会发现是英文版的,需要去安装插件来汉化.具体是在扩展插件搜索chinese,选 ...

  9. Java IO 流 -- 数据流和对象流 DataOutputStream ObjectOutputStream

    DataOutputStream 和 ObjectOutputStream的共同点是: 1.写出后读取 2.读取顺序和写出一致 数据流操作: // 写入 ByteArrayOutputStream b ...

  10. 2019-2020-1 20199308《Linux内核原理与分析》第九周作业

    <Linux内核分析> 第八章 可执行程序工作原理进程的切换和系统的一般执行过程 8.1 知识点 进程调度的时机 ntel定义的中断类型主要有以下几种 硬中断(Interrupt) 软中断 ...