深度学习环境搭建:window10+CUDA10.0+CUDNN+pytorch1.2.0
去年底入手一台联想Y7000P,配置了Nvidia GeForce GTX 1660 Ti GPU,GPU内存6G,但是因为有GPU服务器,所以一直没有在这台笔记本上跑过模型,如今经过一番折腾,终于在此笔记本上搭建好了环境,并成功使用GPU训练了一些模型,本篇记录了环境搭建的过程。
注意:
1、CUDA和CUDNN不是必须另外安装的(当然装了也没关系),除非你要开发CUDA程序,否则如果只是用pytorch等框架,则只需要使用 CUDA 的动态链接库,而这部分在使用conda安装pytorch的时候会一起安装好,也就是说使用conda 安装pytorch之后,无需另外单独安装CUDA和CUDNN,并且你会发现在本地库中有一个cudatoolkit 的包被安装了。但是,如果要为 Pytorch 添加 CUDA 的相关扩展时(参考:https://tutorials.pytorch.kr/advanced/cpp_extension.html ),会对编写的 CUDA 相关程序进行编译等操作,那么就需另外单独安装CUDA和CUDNN.
2、pytorch1.2.0版本在使用tensorboard的时候有很多坑,比如网络图无法正常显示,所以建议安装1.2.0以上的版本,后来我装了最新的稳定版1.5.0,对应的torchvision是0.6.0
一、检查你的GPU
首先确保你的电脑有Nvidia的GPU,并且支持CUDA,可以参考这个网址。
二、安装vs2017(可选)
Visual Studio 2017 Community下载地址
安装选项:勾选“C++的桌面开发”,右边的列表再额外勾选一个SDK,这个SDK是在后续测试CUDA样例的时候要用到的,如下图:
三、安装CUDA10.0(可选)
下载
打开网站:CUDA10.0
按照下图选择对应的选项后,点击下载:
安装
双击下载的文件,选择自定义安装,如果之前你已经安装过显卡驱动并且兼容CUDA10.0,可以在这里去掉显卡驱动的勾选,兼容情况参考这里,截图如下:
另外,去掉Visual studio integration的勾选:
后面默认选择下一步,等待安装完成。
测试
命令行测试:
nvcc -V
输出以下信息即成功:
样例测试:
以管理员方式打开vs2017,然后加载bandwidthTest解决方案,路径如下:
C:\ProgramData\NVIDIA Corporation\CUDA Samples\v10.0\1_Utilities\bandwidthTest\bandwidthTest_vs2017.vcxproj
右键点击bandwidthTest,选择生成,等待生成结果成功。此时在路径:C:\ProgramData\NVIDIA Corporation\CUDA Samples\v10.0\bin\win64\Debug 下,会出现一个bandwidthTest.exe文件,在cmd中执行,结果为PASS则为通过测试。
另外还有一个deviceQuery的样例,其测试过程同上。
四、安装CUDNN(可选)
打开CUDNN的网址
如下图,选择后会下载:
下载文件解压缩出来,然后根据下面的步骤操作(图中拿10.2举例的,因为是官方的教程):
五、安装pytorch
添加conda的清华镜像源
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
添加额外的pytorch源
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch
安装
conda config --set show_channel_urls yes
conda install pytorch=1.5.0 torchvision=0.6.0 cudatoolkit=10.1
到此安装就完成了。
ok,本篇就这么多内容啦~,感谢阅读O(∩_∩)O。
深度学习环境搭建:window10+CUDA10.0+CUDNN+pytorch1.2.0的更多相关文章
- 深度学习环境搭建:Tensorflow1.4.0+Ubuntu16.04+Python3.5+Cuda8.0+Cudnn6.0
目录 深度学习环境搭建:Tensorflow1.4.0+Ubuntu16.04+Python3.5+Cuda8.0+Cudnn6.0 Reference 硬件说明: 软件准备: 1. 安装Ubuntu ...
- 保姆级教程——Ubuntu16.04 Server下深度学习环境搭建:安装CUDA8.0,cuDNN6.0,Bazel0.5.4,源码编译安装TensorFlow1.4.0(GPU版)
写在前面 本文叙述了在Ubuntu16.04 Server下安装CUDA8.0,cuDNN6.0以及源码编译安装TensorFlow1.4.0(GPU版)的亲身经历,包括遇到的问题及解决办法,也有一些 ...
- Win10+RTX2080深度学习环境搭建:tensorflow、mxnet、pytorch、caffe
目录 准备工作 设置conda国内镜像源 conda 深度学习环境 tensorflow.mxnet.pytorch安装 tensorflow mxnet pytorch Caffe安装 配置文件修改 ...
- [AI开发]centOS7.5上基于keras/tensorflow深度学习环境搭建
这篇文章详细介绍在centOS7.5上搭建基于keras/tensorflow的深度学习环境,该环境可用于实际生产.本人现在非常熟练linux(Ubuntu/centOS/openSUSE).wind ...
- 深度学习环境搭建部署(DeepLearning 神经网络)
工作环境 系统:Ubuntu LTS 显卡:GPU NVIDIA驱动:410.93 CUDA:10.0 Python:.x CUDA以及NVIDIA驱动安装,详见https://www.cnblogs ...
- linux系统下深度学习环境搭建和使用
作为一个AI工程师,对Linux的一些技能的掌握也能从一定层面反应工程师的资深水平. 要求1:基于SSH的远程访问(本篇文章) 能用一台笔记本电脑,远程登陆一台linux服务器 能随时使用笔记本电脑启 ...
- Ubuntu深度学习环境搭建 tensorflow+pytorch
目前电脑配置:Ubuntu 16.04 + GTX1080显卡 配置深度学习环境,利用清华源安装一个miniconda环境是非常好的选择.尤其是今天发现conda install -c menpo o ...
- 深度学习环境搭建(ubuntu16.04+Titan Xp安装显卡驱动+Cuda9.0+cudnn+其他软件)
一.硬件环境 ubuntu 16.04LTS + windows10 双系统 NVIDIA TiTan XP 显卡(12G) 二.软件环境 搜狗输入法 下载地址 显卡驱动:LINUX X64 (AMD ...
- 深度学习环境搭建(CUDA9.0 + cudnn-9.0-linux-x64-v7 + tensorflow_gpu-1.8.0 + keras)
关于计算机的硬件配置说明 推荐配置 如果您是高校学生或者高级研究人员,并且实验室或者个人资金充沛,建议您采用如下配置: 主板:X299型号或Z270型号 CPU: i7-6950X或i7-7700K ...
随机推荐
- Weblogic-SSRF 漏洞复现
0x01 环境搭建 我这里使用的是vulhub,它几乎包含了所有的漏洞环境.(建议安装在ubuntu上) 有需要的小伙伴来企鹅群自取. 安装好vulhub之后需要cd 到weblogic ssrf 目 ...
- 数字电路技术之触发器(基本RS触发器)
一.触发器的知识 1.触发器是构成时序逻辑电路的基本逻辑部件. 2.[1]它有两个稳定的状态:0状态和1状态: [2]在不同的输入情况下,它可以被置成0状态或1状态: [3]当输入 ...
- ASE课程总结 by 张葳
本期ASE课程分为两个阶段,第一阶段的personal project与第二阶段的team project,其中,第一阶段旨在锻炼我们个人的问题解决能力和编程能力,第二阶段则锻炼主要我们的管理能力,合 ...
- api测试用例(编写思路)
在API的自动化测试维度中,测试维度分为两个维度,一个是单独的对API的验证,客户端发送一个请求后,服务端得到客户端的请求并且响应回复给客户端: 另外一个维度是基于业务场景的测试,基于业务场景的也就是 ...
- shiro:集成Spring(四)
基于[加密及密码比对器(三)]项目改造 引入相关依赖环境 shiro-spring已经包含 shiro-core和shiro-web 所以这两个依赖可以删掉 <!--shiro继承spring依 ...
- C# LINQ查询之对象
LINQ是一组查询技术的统称,其主要思想是将各种查询功能直接集成到C#语言中,可以对 对象.XML文档.SQL数据库.外部应用程序等进行操作. 这里面讲的简单的几个子句, 必须以from子句开头,以s ...
- 可以用 Python 编程语言做哪些神奇好玩的事情?除了生孩子不能,其他全都行!
坦克大战 源自于一个用Python写各种小游戏的github合集,star数1k.除了坦克大战外,还包含滑雪者.皮卡丘GOGO.贪吃蛇.推箱子.拼图等游戏. 图片转铅笔画 帮助你快速生成属于自己的铅笔 ...
- 算法笔记刷题3(codeup 5901)
今天刷题的速度依旧很慢(小乌龟挥爪.jpg) 我觉得codeup5901中回文串的处理很妙,如果是我自己写的话可能会把数组直接倒过来和原来对比.按照对称规律进行比对的话,工作量可以减少一半. #inc ...
- all_user_func()详解
来源:https://blog.csdn.net/moliyiran/article/details/83514495 call_user_func — 把第一个参数作为回调函数调用 通过函数的方式回 ...
- ajax后台返回指定的错误码
js: $.ajax({ type: "POST", url: 'post.php', data: serialNumber + "&getSerialNumbe ...