[物理学与PDEs]第3章第5节 一维磁流体力学方程组 5.1 一维磁流体力学方程组
1. 当磁流体力学方程组中的量只依赖于 $t$ 及一个空间变量时, 该方程组称为一维的.
2. 一维磁流体力学方程组 $$\beex \bea \cfrac{\p H_2}{\p t}& +u_1\cfrac{\p H_2}{\p x} +H_2\cfrac{\p u_1}{\p x} -H_1\cfrac{\p u_2}{\p x} =\cfrac{1}{\sigma\mu_0}\cfrac{\p^2H_2}{\p x^2},\\ \cfrac{\p H_3}{\p t}&+u_1\cfrac{\p H_3}{\p x} +H_3\cfrac{\p u_1}{\p x} -H_1\cfrac{\p u_3}{\p x} =\cfrac{1}{\sigma\mu_0}\cfrac{\p^2H_3}{\p x^2},\\ \cfrac{\p \rho}{\p t}&+u_1\cfrac{\p \rho}{\p x}+\rho\cfrac{\p u_1}{\p x}=0,\\ \cfrac{\p u_1}{\p t}&+u_1\cfrac{\p u_1}{\p x} +\cfrac{1}{\rho}\cfrac{\p p}{\p x} -\cfrac{1}{\rho}\cfrac{\p}{\p x} \sez{\sex{\cfrac{4}{3}\bar \mu+\bar \mu'}\cfrac{\p u_1}{\p x}} +\cfrac{\mu_0}{\rho}\sex{H_2\cfrac{\p H_2}{\p x}+H_3\cfrac{\p H_3}{\p x}}=F_1,\\ \cfrac{\p u_2}{\p t}& +u_1\cfrac{\p u_2}{\p x} -\cfrac{1}{\rho}\cfrac{\p }{\p x}\sex{\bar \mu \cfrac{\p u_2}{\p x}} -\cfrac{\mu_0}{\rho}H_1\cfrac{\p H_2}{\p x}=F_2,\\ \cfrac{\p u_3}{\p t}&+u_1\cfrac{\p u_3}{\p x} -\cfrac{1}{\rho}\cfrac{\p}{\p x}\sex{\bar \mu\cfrac{\p u_3}{\p x}} -\cfrac{\mu_0}{\rho }H_1\cfrac{\p H_3}{\p x}=F_3,\\ \rho T\cfrac{\p S}{\p t}& +\rho T u_1\cfrac{\p S}{\p x} -\sex{\cfrac{4}{3}\bar \mu+\mu'}\sex{\cfrac{\p u_1}{\p x}}^2 -\bar \mu\sex{\cfrac{\p u_2}{\p x}}^2 -\bar\mu \sex{\cfrac{\p u_3}{\p x}}^2 =\cfrac{\p}{\p x}\sex{\kappa\cfrac{\p T}{\p x}}. \eea \eeex$$
3. 一维理想磁流体力学方程组 $$\beex \bea \cfrac{\p H_2}{\p t}& +u_1\cfrac{\p H_2}{\p x} +H_2\cfrac{\p u_1}{\p x} -H_1\cfrac{\p u_2}{\p x} =0,\\ \cfrac{\p H_3}{\p t}&+u_1\cfrac{\p H_3}{\p x} +H_3\cfrac{\p u_1}{\p x} -H_1\cfrac{\p u_3}{\p x} =0,\\ \cfrac{\p \rho}{\p t}&+u_1\cfrac{\p \rho}{\p x}+\rho\cfrac{\p u_1}{\p x}=0,\\ \cfrac{\p u_1}{\p t}&+u_1\cfrac{\p u_1}{\p x} +\cfrac{1}{\rho}\sex{\tilde c^2\cfrac{\p \rho}{\p x}+\cfrac{\p p}{\p S}\cfrac{\p S}{\p x}} +\cfrac{\mu_0}{\rho}\sex{H_2\cfrac{\p H_2}{\p x}+H_3\cfrac{\p H_3}{\p x}}=F_1,\\ \cfrac{\p u_2}{\p t}& +u_1\cfrac{\p u_2}{\p x} -\cfrac{\mu_0}{\rho}H_1\cfrac{\p H_2}{\p x}=F_2,\\ \cfrac{\p u_3}{\p t}&+u_1\cfrac{\p u_3}{\p x} -\cfrac{\mu_0}{\rho }H_1\cfrac{\p H_3}{\p x}=F_3,\\ \cfrac{\p S}{\p t}&+u_1\cfrac{\p S}{\p x}=0. \eea \eeex$$
(1) 其为对称双曲组.
(2) 当 $H_1\neq 0$, $H_2^2+H_3^2\neq 0$ 时, 其为一维严格双曲组.
(3) 当 $H_1=0$ 或 $H_2^2+H_3^2=0$ 时, 其为一维双曲组.
[物理学与PDEs]第3章第5节 一维磁流体力学方程组 5.1 一维磁流体力学方程组的更多相关文章
- [物理学与PDEs]第5章第1节 引言
1. 弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2. 荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...
- [物理学与PDEs]第4章第1节 引言
1. 本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2. 燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...
- [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题
5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1. 线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...
- [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构
5.5.1 线性弹性动力学方程组 1. 线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...
- [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系
5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...
- [物理学与PDEs]第5章第3节 守恒定律, 应力张量
5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0. \eex$$ 5. 3. 2 应 ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量
1. 位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2. 位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量
1. 引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量
$$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...
- [物理学与PDEs]第4章第3节 一维反应流体力学方程组 3.3 一维反应流体力学方程组的数学结构
一维理想反应流体力学方程组是一阶拟线性双曲组.
随机推荐
- China Tightens Recycling Import Rules
China Tightens Recycling Import Rules We have all seen the pictures of cities in China with air poll ...
- 【Python 05】Python开发环境搭建
Python3安装和使用 1.安装 Python管方下载地址 选择Customize installation安装,并且勾选Add Python 3.X to PATH. 勾选Documentatio ...
- springmvc中的类型转换器
在使用springmvc时可能使用@RequestParam注解或者@RequestBody注解,他们的作用是把请求体中的参数取出来,给方法的参数绑定值. 假如方法的参数是自定义类型,就要用到类型转换 ...
- (golang)HTTP基本认证机制及使用gocolly登录爬取
内网有个网页用了HTTP基本认证机制,想用gocolly爬取,不知道怎么登录,只好研究HTTP基本认证机制 参考这里:https://www.jb51.net/article/89070.htm 下面 ...
- Java 前后端List传值
js代码 function click(){ var arrays = new Array(); for (var i = 0; i < arr.length; i++) { arrays.pu ...
- Vim配置(python版)
由于马上将用到django框架,需要有一个好的ide来coding,之前做C的开发时候体会到了vim的强大,所以编写python也决定采用vim. PS:除了vim,一般浏览代码多用atom和subl ...
- PHP命令执行与防范
命令执行漏洞是指攻击者可以随意执行系统命令,是高危漏洞之一. 命令连接符:& && || | 如:ping www.baidu.com && ne ...
- android H5支付 网络环境未能通过安全验证,请稍后再试
android做混合开发微信H5支付时碰到的一个问题. 解决办法:把所使用的WebView中重新如下方法即可 webView.setWebViewClient(new WebViewClient() ...
- Linux启动时间优化-内核和用户空间启动优化实践
关键词:initcall.bootgraph.py.bootchartd.pybootchart等. 启动时间的优化,分为两大部分,分别是内核部分和用户空间两大部分. 从内核timestamp 0.0 ...
- 3-STM32物联网开发WIFI(ESP8266)+GPRS(Air202)系统方案安全篇(购买域名,域名绑定IP)
2-STM32物联网开发WIFI(ESP8266)+GPRS(Air202)系统方案安全篇(监听Wi-Fi和APP的数据) 因为安全连接是和域名绑在一块的,所以需要申请域名 有没有不知道域名是什么的, ...