[物理学与PDEs]第3章第5节 一维磁流体力学方程组 5.1 一维磁流体力学方程组
1. 当磁流体力学方程组中的量只依赖于 $t$ 及一个空间变量时, 该方程组称为一维的.
2. 一维磁流体力学方程组 $$\beex \bea \cfrac{\p H_2}{\p t}& +u_1\cfrac{\p H_2}{\p x} +H_2\cfrac{\p u_1}{\p x} -H_1\cfrac{\p u_2}{\p x} =\cfrac{1}{\sigma\mu_0}\cfrac{\p^2H_2}{\p x^2},\\ \cfrac{\p H_3}{\p t}&+u_1\cfrac{\p H_3}{\p x} +H_3\cfrac{\p u_1}{\p x} -H_1\cfrac{\p u_3}{\p x} =\cfrac{1}{\sigma\mu_0}\cfrac{\p^2H_3}{\p x^2},\\ \cfrac{\p \rho}{\p t}&+u_1\cfrac{\p \rho}{\p x}+\rho\cfrac{\p u_1}{\p x}=0,\\ \cfrac{\p u_1}{\p t}&+u_1\cfrac{\p u_1}{\p x} +\cfrac{1}{\rho}\cfrac{\p p}{\p x} -\cfrac{1}{\rho}\cfrac{\p}{\p x} \sez{\sex{\cfrac{4}{3}\bar \mu+\bar \mu'}\cfrac{\p u_1}{\p x}} +\cfrac{\mu_0}{\rho}\sex{H_2\cfrac{\p H_2}{\p x}+H_3\cfrac{\p H_3}{\p x}}=F_1,\\ \cfrac{\p u_2}{\p t}& +u_1\cfrac{\p u_2}{\p x} -\cfrac{1}{\rho}\cfrac{\p }{\p x}\sex{\bar \mu \cfrac{\p u_2}{\p x}} -\cfrac{\mu_0}{\rho}H_1\cfrac{\p H_2}{\p x}=F_2,\\ \cfrac{\p u_3}{\p t}&+u_1\cfrac{\p u_3}{\p x} -\cfrac{1}{\rho}\cfrac{\p}{\p x}\sex{\bar \mu\cfrac{\p u_3}{\p x}} -\cfrac{\mu_0}{\rho }H_1\cfrac{\p H_3}{\p x}=F_3,\\ \rho T\cfrac{\p S}{\p t}& +\rho T u_1\cfrac{\p S}{\p x} -\sex{\cfrac{4}{3}\bar \mu+\mu'}\sex{\cfrac{\p u_1}{\p x}}^2 -\bar \mu\sex{\cfrac{\p u_2}{\p x}}^2 -\bar\mu \sex{\cfrac{\p u_3}{\p x}}^2 =\cfrac{\p}{\p x}\sex{\kappa\cfrac{\p T}{\p x}}. \eea \eeex$$
3. 一维理想磁流体力学方程组 $$\beex \bea \cfrac{\p H_2}{\p t}& +u_1\cfrac{\p H_2}{\p x} +H_2\cfrac{\p u_1}{\p x} -H_1\cfrac{\p u_2}{\p x} =0,\\ \cfrac{\p H_3}{\p t}&+u_1\cfrac{\p H_3}{\p x} +H_3\cfrac{\p u_1}{\p x} -H_1\cfrac{\p u_3}{\p x} =0,\\ \cfrac{\p \rho}{\p t}&+u_1\cfrac{\p \rho}{\p x}+\rho\cfrac{\p u_1}{\p x}=0,\\ \cfrac{\p u_1}{\p t}&+u_1\cfrac{\p u_1}{\p x} +\cfrac{1}{\rho}\sex{\tilde c^2\cfrac{\p \rho}{\p x}+\cfrac{\p p}{\p S}\cfrac{\p S}{\p x}} +\cfrac{\mu_0}{\rho}\sex{H_2\cfrac{\p H_2}{\p x}+H_3\cfrac{\p H_3}{\p x}}=F_1,\\ \cfrac{\p u_2}{\p t}& +u_1\cfrac{\p u_2}{\p x} -\cfrac{\mu_0}{\rho}H_1\cfrac{\p H_2}{\p x}=F_2,\\ \cfrac{\p u_3}{\p t}&+u_1\cfrac{\p u_3}{\p x} -\cfrac{\mu_0}{\rho }H_1\cfrac{\p H_3}{\p x}=F_3,\\ \cfrac{\p S}{\p t}&+u_1\cfrac{\p S}{\p x}=0. \eea \eeex$$
(1) 其为对称双曲组.
(2) 当 $H_1\neq 0$, $H_2^2+H_3^2\neq 0$ 时, 其为一维严格双曲组.
(3) 当 $H_1=0$ 或 $H_2^2+H_3^2=0$ 时, 其为一维双曲组.
[物理学与PDEs]第3章第5节 一维磁流体力学方程组 5.1 一维磁流体力学方程组的更多相关文章
- [物理学与PDEs]第5章第1节 引言
1. 弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2. 荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...
- [物理学与PDEs]第4章第1节 引言
1. 本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2. 燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...
- [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题
5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1. 线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...
- [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构
5.5.1 线性弹性动力学方程组 1. 线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...
- [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系
5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...
- [物理学与PDEs]第5章第3节 守恒定律, 应力张量
5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0. \eex$$ 5. 3. 2 应 ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量
1. 位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2. 位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量
1. 引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量
$$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...
- [物理学与PDEs]第4章第3节 一维反应流体力学方程组 3.3 一维反应流体力学方程组的数学结构
一维理想反应流体力学方程组是一阶拟线性双曲组.
随机推荐
- SystemTap Beginners Guide
SystemTap 3.0 SystemTap Beginners Guide Introduction to SystemTap Edition 3.0 Red Hat, Inc. Don Do ...
- Editplus5.0 注册码
EditPlus5.0注册码 注册名 Vovan 注册码 3AG46-JJ48E-CEACC-8E6EW-ECUAW EditPlus3.x注册码 注册名 linzhihui 注册码 5A2B6-69 ...
- C++笔记--std::相关
std::packaged_task https://www.cnblogs.com/haippy/p/3279565.html https://en.cppreference.com/w/cpp/t ...
- 实验六:通过grub程序引导本地磁盘内核启动系统(busybox)
实验名称: 通过grub程序引导本地磁盘内核启动系统(busybox) 实验环境: 理论上,该实验只需要配置好xen环境即可,但是,我们的xen环境安装在centOS7上,但是我们又是使用的kerne ...
- 在物理内存中观察CLR托管内存及GC行为
虽然看了一些书,还网络上的一些博文,不过对CLR托管内存细节依然比较模糊.而且因为工作原因总会有很多质疑,想要亲眼看到内存里二进制数据的变化. 所以借助winhex直接查看内存以证实书上的描述或更进一 ...
- C#调用Delphi DLL获取字符串(C# IntPtr 与 string互转 )
前因后果 调用一门锁的dll实现读取酒店IC卡数据,直接用Readme里的方法出错. 函数声明: 一.读卡函数 ************************ Delphi 调用 ****** ...
- 数据接口测试工具 Postman 介绍
此文介绍好用的数据接口测试工具 Postman,能帮助您方便.快速.统一地管理项目中使用以及测试的数据接口. 1. Postman 简介 Postman 一款非常流行的 API 调试工具.其实,开发人 ...
- Command "python setup.py egg_info" failed with error code 1 in c:\users\w5659\appdata\local\temp\pip-build-fs2yzl\ipython\
Error Msg: Collecting ipython Using cached https://files.pythonhosted.org/packages/5b/e3/4b3082bd7f6 ...
- day02(编程语言,解释器,环境变量,执行方式,pycharm,pip,变量三大组成)
上节课复习: 重点: 1,进制转换:二进制与十六进制 2,内存分布:栈区 与 堆区 10101001110111 => 2a77 abf1 => 1010101111110001 计算 ...
- 一、Mysql安装
一.官网下载:https://dev.mysql.com/downloads/mysql/ 二.解压下载好的压缩包,本人存放的位置如下: 如下图解压后的文件目录,因版本的差异.一开始解压后的文件夹下可 ...