1.  当磁流体力学方程组中的量只依赖于 $t$ 及一个空间变量时, 该方程组称为一维的.

2.  一维磁流体力学方程组 $$\beex \bea \cfrac{\p H_2}{\p t}& +u_1\cfrac{\p H_2}{\p x} +H_2\cfrac{\p u_1}{\p x} -H_1\cfrac{\p u_2}{\p x} =\cfrac{1}{\sigma\mu_0}\cfrac{\p^2H_2}{\p x^2},\\ \cfrac{\p H_3}{\p t}&+u_1\cfrac{\p H_3}{\p x} +H_3\cfrac{\p u_1}{\p x} -H_1\cfrac{\p u_3}{\p x} =\cfrac{1}{\sigma\mu_0}\cfrac{\p^2H_3}{\p x^2},\\ \cfrac{\p \rho}{\p t}&+u_1\cfrac{\p \rho}{\p x}+\rho\cfrac{\p u_1}{\p x}=0,\\ \cfrac{\p u_1}{\p t}&+u_1\cfrac{\p u_1}{\p x} +\cfrac{1}{\rho}\cfrac{\p p}{\p x} -\cfrac{1}{\rho}\cfrac{\p}{\p x} \sez{\sex{\cfrac{4}{3}\bar \mu+\bar \mu'}\cfrac{\p u_1}{\p x}} +\cfrac{\mu_0}{\rho}\sex{H_2\cfrac{\p H_2}{\p x}+H_3\cfrac{\p H_3}{\p x}}=F_1,\\ \cfrac{\p u_2}{\p t}& +u_1\cfrac{\p u_2}{\p x} -\cfrac{1}{\rho}\cfrac{\p }{\p x}\sex{\bar \mu \cfrac{\p u_2}{\p x}} -\cfrac{\mu_0}{\rho}H_1\cfrac{\p H_2}{\p x}=F_2,\\ \cfrac{\p u_3}{\p t}&+u_1\cfrac{\p u_3}{\p x} -\cfrac{1}{\rho}\cfrac{\p}{\p x}\sex{\bar \mu\cfrac{\p u_3}{\p x}} -\cfrac{\mu_0}{\rho }H_1\cfrac{\p H_3}{\p x}=F_3,\\ \rho T\cfrac{\p S}{\p t}& +\rho T u_1\cfrac{\p S}{\p x} -\sex{\cfrac{4}{3}\bar \mu+\mu'}\sex{\cfrac{\p u_1}{\p x}}^2 -\bar \mu\sex{\cfrac{\p u_2}{\p x}}^2 -\bar\mu \sex{\cfrac{\p u_3}{\p x}}^2 =\cfrac{\p}{\p x}\sex{\kappa\cfrac{\p T}{\p x}}. \eea \eeex$$

3.  一维理想磁流体力学方程组 $$\beex \bea \cfrac{\p H_2}{\p t}& +u_1\cfrac{\p H_2}{\p x} +H_2\cfrac{\p u_1}{\p x} -H_1\cfrac{\p u_2}{\p x} =0,\\ \cfrac{\p H_3}{\p t}&+u_1\cfrac{\p H_3}{\p x} +H_3\cfrac{\p u_1}{\p x} -H_1\cfrac{\p u_3}{\p x} =0,\\ \cfrac{\p \rho}{\p t}&+u_1\cfrac{\p \rho}{\p x}+\rho\cfrac{\p u_1}{\p x}=0,\\ \cfrac{\p u_1}{\p t}&+u_1\cfrac{\p u_1}{\p x} +\cfrac{1}{\rho}\sex{\tilde c^2\cfrac{\p \rho}{\p x}+\cfrac{\p p}{\p S}\cfrac{\p S}{\p x}} +\cfrac{\mu_0}{\rho}\sex{H_2\cfrac{\p H_2}{\p x}+H_3\cfrac{\p H_3}{\p x}}=F_1,\\ \cfrac{\p u_2}{\p t}& +u_1\cfrac{\p u_2}{\p x} -\cfrac{\mu_0}{\rho}H_1\cfrac{\p H_2}{\p x}=F_2,\\ \cfrac{\p u_3}{\p t}&+u_1\cfrac{\p u_3}{\p x} -\cfrac{\mu_0}{\rho }H_1\cfrac{\p H_3}{\p x}=F_3,\\ \cfrac{\p S}{\p t}&+u_1\cfrac{\p S}{\p x}=0.  \eea \eeex$$

(1)  其为对称双曲组.

(2)  当 $H_1\neq 0$, $H_2^2+H_3^2\neq 0$ 时, 其为一维严格双曲组.

(3)  当 $H_1=0$ 或 $H_2^2+H_3^2=0$ 时, 其为一维双曲组.

[物理学与PDEs]第3章第5节 一维磁流体力学方程组 5.1 一维磁流体力学方程组的更多相关文章

  1. [物理学与PDEs]第5章第1节 引言

    1.  弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2.  荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...

  2. [物理学与PDEs]第4章第1节 引言

    1.  本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2.  燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...

  3. [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题

    5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1.  线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...

  4. [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构

    5.5.1 线性弹性动力学方程组   1.  线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...

  5. [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系

    5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...

  6. [物理学与PDEs]第5章第3节 守恒定律, 应力张量

    5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0.  \eex$$ 5. 3. 2 应 ...

  7. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量

    1.  位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2.  位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...

  8. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量

    1.  引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...

  9. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量

    $$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...

  10. [物理学与PDEs]第4章第3节 一维反应流体力学方程组 3.3 一维反应流体力学方程组的数学结构

    一维理想反应流体力学方程组是一阶拟线性双曲组.

随机推荐

  1. China Tightens Recycling Import Rules

    China Tightens Recycling Import Rules We have all seen the pictures of cities in China with air poll ...

  2. 【Python 05】Python开发环境搭建

    Python3安装和使用 1.安装 Python管方下载地址 选择Customize installation安装,并且勾选Add Python 3.X to PATH. 勾选Documentatio ...

  3. springmvc中的类型转换器

    在使用springmvc时可能使用@RequestParam注解或者@RequestBody注解,他们的作用是把请求体中的参数取出来,给方法的参数绑定值. 假如方法的参数是自定义类型,就要用到类型转换 ...

  4. (golang)HTTP基本认证机制及使用gocolly登录爬取

    内网有个网页用了HTTP基本认证机制,想用gocolly爬取,不知道怎么登录,只好研究HTTP基本认证机制 参考这里:https://www.jb51.net/article/89070.htm 下面 ...

  5. Java 前后端List传值

    js代码 function click(){ var arrays = new Array(); for (var i = 0; i < arr.length; i++) { arrays.pu ...

  6. Vim配置(python版)

    由于马上将用到django框架,需要有一个好的ide来coding,之前做C的开发时候体会到了vim的强大,所以编写python也决定采用vim. PS:除了vim,一般浏览代码多用atom和subl ...

  7. PHP命令执行与防范

    命令执行漏洞是指攻击者可以随意执行系统命令,是高危漏洞之一. 命令连接符:&  &&   ||     | 如:ping www.baidu.com && ne ...

  8. android H5支付 网络环境未能通过安全验证,请稍后再试

    android做混合开发微信H5支付时碰到的一个问题. 解决办法:把所使用的WebView中重新如下方法即可 webView.setWebViewClient(new WebViewClient() ...

  9. Linux启动时间优化-内核和用户空间启动优化实践

    关键词:initcall.bootgraph.py.bootchartd.pybootchart等. 启动时间的优化,分为两大部分,分别是内核部分和用户空间两大部分. 从内核timestamp 0.0 ...

  10. 3-STM32物联网开发WIFI(ESP8266)+GPRS(Air202)系统方案安全篇(购买域名,域名绑定IP)

    2-STM32物联网开发WIFI(ESP8266)+GPRS(Air202)系统方案安全篇(监听Wi-Fi和APP的数据) 因为安全连接是和域名绑在一块的,所以需要申请域名 有没有不知道域名是什么的, ...