若二次函数$f(x)=ax^2+bx+c(a,b,c>0)$有零点,则$\min\{\dfrac{b+c}{a},\dfrac{c+a}{b},\dfrac{a+b}{c}\}$ 的最大值为____


由题意$b^2\ge 4ac,$由$a,c$的对称性只需考虑$b=max\{a,b,c\}\vee a=\max\{a,b,c\}$.
当$b=max\{a,b,c\}$时$\min\{\dfrac{b+c}{a},\dfrac{c+a}{b},\dfrac{a+b}{c}\}=\dfrac{c+a}{a}$
设$\dfrac{a}{b}=x,\dfrac{c}{b}=y$故
\begin{equation}
\left\{ \begin{aligned}
0<x& \le1\\
0<y&\le1\\
0<y&\le\dfrac{1}{4x}\\
\end{aligned} \right.
\end{equation}
由线性规划可知$z=x+y$在$(1,\dfrac{1}{4})$和$(\dfrac{1}{4},1)$处同时取最大值$\dfrac{5}{4}$.
当$a=\max\{a,b,c\}$时$\min\{\dfrac{b+c}{a},\dfrac{c+a}{b},\dfrac{a+b}{c}\}=\dfrac{c+b}{a}$
设$\dfrac{b}{a}=x,\dfrac{c}{a}=y$故
\begin{equation}
\left\{ \begin{aligned}
0<x& \le1\\
0<y&\le1\\
y&\le x\\
0<y&\le\dfrac{x^2}{4}\\
\end{aligned} \right.
\end{equation}
由线性规划可知$z=x+y$在$(1,\dfrac{1}{4})$时取最大值$\dfrac{5}{4}$.

MT【321】分类线性规划的更多相关文章

  1. MT【117】立体几何里的一道分类讨论题

    评:最后用到了中间的截面三角形两边之和大于第三边.能不能构成三棱锥时考虑压扁的"降维"打击是常见的方式.

  2. c++map的用法 分类: POJ 2015-06-19 18:36 11人阅读 评论(0) 收藏

    c++map的用法 分类: 资料 2012-11-14 21:26 10573人阅读 评论(0) 收藏 举报 最全的c++map的用法 此文是复制来的0.0 1. map最基本的构造函数: map&l ...

  3. 【南阳OJ分类之语言入门】80题题目+AC代码汇总

    小技巧:本文之前由csdn自动生成了一个目录,不必下拉一个一个去找,可通过目录标题直接定位. 本文转载自本人的csdn博客,复制过来的,排版就不弄了,欢迎转载. 声明: 题目部分皆为南阳OJ题目. 代 ...

  4. 【Objective-C 基础】4.分类和协议

    1.分类 OC提供了一种与众不同的方式--Category,可以动态的为已经存在的类添加新的行为(方法) 这样可以保证类的原始设计规模较小,功能增加时再逐步扩展. 使用Category对类进行扩展时, ...

  5. 机器学习之分类问题实战(基于UCI Bank Marketing Dataset)

    导读: 分类问题是机器学习应用中的常见问题,而二分类问题是其中的典型,例如垃圾邮件的识别.本文基于UCI机器学习数据库中的银行营销数据集,从对数据集进行探索,数据预处理和特征工程,到学习模型的评估与选 ...

  6. ACM/IOI 历年国家集训队论文集和论文算法分类整理

    国家集训队1999论文集 陈宏:<数据结构的选择与算法效率--从IOI98试题PICTURE谈起> 来煜坤:<把握本质,灵活运用--动态规划的深入探讨> 齐鑫:<搜索方法 ...

  7. ACM知识点分类

    (知识点分类.看完想(╯‵□′)╯︵┻━┻) orz...一点点来吧.简单标记一下. 蓝色,比较熟悉,能够做. 蓝绿色,一般熟悉,需要加强 红色,(比个辣鸡.jpg) (标记完突然想打人...) 第一 ...

  8. ID3和C4.5分类决策树算法 - 数据挖掘算法(7)

    (2017-05-18 银河统计) 决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来判断其可行性的决策分析方法,是直观运用概率分析的一种图解法.由于这种决策分支画 ...

  9. R语言常用包分类总结

    常用包: ——数据处理:lubridata ,plyr ,reshape2,stringr,formatR,mcmc: ——机器学习:nnet,rpart,tree,party,lars,boost, ...

随机推荐

  1. C#监控指定目录的文件变化的代码

    如下的资料是关于C#监控指定目录的文件变化的代码. FileSystemWatcher watcher = new FileSystemWatcher();watcher.Path = @" ...

  2. jQuery省市区三级联动菜单

    <style> select{ padding:5px 0; } .outer{ width:500px; margin:20px auto; } </style> <d ...

  3. 利用ZYNQ SOC快速打开算法验证通路(5)——system generator算法IP导入IP integrator

    一.前言 利用FPGA设计算法一直以来都是热点,同样也是难点.将复杂的数学公式 模型通过硬件系统来搭建,在低延时 高并行性等优势背后极大提高了设计难度和开发周期.Xilinx公司的sysGen(sys ...

  4. 安装Linux内核源代码

    系统:Ubuntu 18 CPU架构:AMD64 1,在终端输入:sudo apt install linux-source 命令 2,进入/usr/src/linux-source-4.15.0目录 ...

  5. Filebeat使用内置的mysql模块收集日志存储到ES集群并使用kibana存储

    Filebeat内置了不少的模块,可以直接使用他们对日志进行收集,支持的模块如下: [root@ELK-chaofeng07 logstash]# filebeat modules list Enab ...

  6. Filebeat插件启动失败,不能直接查找报错原因

    老是在filebeat启动的这一步骤上出错,但是由于filebeat是由systemd启动的,因此原因也经常查不清楚,因此并不能直观的查出错误在哪里,所以今天教给大家两个寻找错误的根源的方法 先看我这 ...

  7. Django--用户认证组件auth(登录用-依赖session,其他用)

    一.用户认证组件auth介绍 二.auth_user表添加用户信息 三.auth使用示例 四.auth封装的认证装饰器 一.用户认证组件auth介绍 解决的问题: 之前是把is_login=True放 ...

  8. Redis管道和发布订阅

    管道:原子性执行命令 ''' redis-py默认在执行每次请求都会创建(连接池申请连接)和断开(归还连接池)一次连接操作, 如果想要在一次请求中指定多个命令,则可以使用pipline实现一次请求指定 ...

  9. Loj 2320.「清华集训 2017」生成树计数

    Loj 2320.「清华集训 2017」生成树计数 题目描述 在一个 \(s\) 个点的图中,存在 \(s-n\) 条边,使图中形成了 \(n\) 个连通块,第 \(i\) 个连通块中有 \(a_i\ ...

  10. Django-CRM项目学习(二)-模仿admin实现stark

    开始今日份整理 1.stark模块基本操作 1.1 stark模块的启动 保证django自动的加载每一个app下的stark.py文件 创建django项目,创建stark项目,start app ...