[TJOI2015]概率论
史上最短黑题
看起来一脸懵逼,没有取模,1e-9
根据期望定义,发现
分母是一个卡特兰数,,,,不能直接算
所以考虑怎么消掉一些东西
gn表示n个点的叶子个数和,fn表示n个点二叉树个数
结论:g(n)=n*f(n-1)
考虑每个n个点的树的叶子,分别拔掉所有k个叶子,给剩下的k个(n-1)个点的树打上标记
那么,g(n)就是n-1个点的所有的树被打的标记之和
一个n-1个点的树,有n个位置可以有叶子,恰好会被打n次标记!
然后,ans(n)=g(n)/f(n),f(n)=C(2n,n)/(n+1)化简即可。
#include<bits/stdc++.h>
#define reg register int
#define il inline
#define fi first
#define se second
#define mk(a,b) make_pair(a,b)
#define numb (ch^'0')
using namespace std;
typedef long long ll;
template<class T>il void rd(T &x){
char ch;x=;bool fl=false;
while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=numb;isdigit(ch=getchar());x=x*+numb);
(fl==true)&&(x=-x);
}
template<class T>il void output(T x){if(x/)output(x/);putchar(x%+'');}
template<class T>il void ot(T x){if(x<) putchar('-'),x=-x;output(x);putchar(' ');}
template<class T>il void prt(T a[],int st,int nd){for(reg i=st;i<=nd;++i) ot(a[i]);putchar('\n');} namespace Miracle{
int main(){
double n;cin>>n;
printf("%.12lf",n*(n+)/(*(*n-)));
return ;
} }
signed main(){
Miracle::main();
return ;
} /*
Author: *Miracle*
Date: 2019/4/23 14:29:28
*/
[TJOI2015]概率论的更多相关文章
- 4001: [TJOI2015]概率论
4001: [TJOI2015]概率论 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 262 Solved: 108[Submit][Status] ...
- 【BZOJ4001】[TJOI2015]概率论(生成函数)
[BZOJ4001][TJOI2015]概率论(生成函数) 题面 BZOJ 洛谷 题解 这题好仙啊.... 设\(g_n\)表示\(n\)个点的二叉树个数,\(f_n\)表示\(n\)个点的二叉树的叶 ...
- bzoj4001: [TJOI2015]概率论
题目链接 bzoj4001: [TJOI2015]概率论 题解 生成函数+求导 设\(g(n)\)表示有\(n\)个节点的二叉树的个数,\(g(0) = 1\) 设\(f(x)\)表示\(n\)个节点 ...
- P3978 [TJOI2015]概率论
\(\color{#0066ff}{ 题目描述 }\) 为了提高智商,ZJY开始学习概率论.有一天,她想到了这样一个问题:对于一棵随机生成的n个结点的有根二叉树(所有互相不同构的形态等概率出现),它的 ...
- 【BZOJ4001】【Luogu P3978】 [TJOI2015]概率论
题目描述: Description: Input 输入一个正整数N,代表有根树的结点数 Output 输出这棵树期望的叶子节点数.要求误差小于1e-9 Sample Input 1 Sample Ou ...
- 【BZOJ】4001: [TJOI2015]概率论
题意 求节点数为\(n\)的有根树期望的叶子结点数.(\(n \le 10^9\)) 分析 神题就打表找规律.. 题解 方案数就是卡特兰数,$h_0=1, h_n = \sum_{i=0}^{n-1} ...
- luogu3978 [TJOI2015]概率论
题目链接:洛谷 题目大意:求所有$n$个点的有根二叉树的叶子节点数总和/$n$个点的有根二叉树的个数. 数据范围:$n\leq 10^9$ 生成函数神题!!!!(我只是来水博客的) 首先$n$个点的有 ...
- BZOJ4001[TJOI2015]概率论——卡特兰数
题目描述 输入 输入一个正整数N,代表有根树的结点数 输出 输出这棵树期望的叶子节点数.要求误差小于1e-9 样例输入 1 样例输出 1.000000000 提示 1<=N<=10^9 设 ...
- BZOJ4001 TJOI2015概率论(生成函数+卡特兰数)
设f(n)为n个节点的二叉树个数,g(n)为n个节点的二叉树的叶子数量之和.则答案为g(n)/f(n). 显然f(n)为卡特兰数.有递推式f(n)=Σf(i)f(n-i-1) (i=0~n-1). 类 ...
随机推荐
- java10.0.2和java 11.0.1配置环境变量
java10.0.2 在网上找了各种方法一直也没配好打开jak下的lib文件夹发现并没有tools.jar,后经查询jdk-9后就没有了上述.jar文件所以我的配置方法如下 ClASSPATH C:\ ...
- anaconda --包管理和环境管理器
前言: 以下所有的命令都Win10环境的 Anaconda Prompt 中 环境管理 创建虚拟环境 conda create --name env_name python 也可以指定 Python ...
- c/c++ llinux epoll系列4 利用epoll_wait实现非阻塞的connect
llinux epoll系列4 利用epoll_wait实现非阻塞的connect connect函数是阻塞的,而且不能设置connect函数的timeout时间,所以一旦阻塞太长时间,影响用户的体验 ...
- iOS 限制TextField输入长度(支持删除)
if (textField == _phoneTF) { //支持删除 && ) { return YES; } ) { _phoneTF.text = [textField.text ...
- js 学习之路6: if...else...条件语句的使用
1.1 if (...) { ... } else { ... } <!DOCTYPE html> <html> <meta http-equiv="Conte ...
- Mysql数据中Packet for query is too large错误的解决方法
有时,程序在连接mysql执行操作数据库时,会出现如下类似错误信息: Packet for query is too large (4230 > 1024). You can change th ...
- 数据库【mysql篇】典型的一些练习题目
班级表 class 学生表student 老师表 teacher 课程表course 成绩表 score 准备数据 创建数据库 create database tang_test charset='u ...
- 安装Gradle(Windows & Linux)
Gradle 是以 Groovy 语言为基础,面向Java应用为主.基于DSL(领域特定语言)语法的自动化构建工具.在github上,gradle项目很多,有的是gradel跟maven构建一块儿使用 ...
- JDK内置工具使用(jps、jstack、jmap、jstat)
一.JPS 1.jps -lvm:用于查看当前机器上已装载的jvm 二.jstackjstack命令主要用来查看Java线程的调用堆栈的,可以用来分析线程问题(如死锁) 1.jstack -l pid ...
- 【接口时序】6、IIC总线的原理与Verilog实现
一. 软件平台与硬件平台 软件平台: 1.操作系统:Windows-8.1 2.开发套件:ISE14.7 3.仿真工具:ModelSim-10.4-SE .ChipScope 硬件平台: 1. FPG ...