基本的拉格朗日乘子法(又称为拉格朗日乘数法),就是求函数 f(x1,x2,...) 在 g(x1,x2,...)=C 的约束条件下的极值的方法。其主要思想是引入一个新的参数 λ (即拉格朗日乘子),将约束条件函数与原函数联系到一起,使能配成与变量数量相等的等式方程,从而求出得到原函数极值的各个变量的解。拉格朗日乘子是数学分析中同一名词的推广。

什么是拉格朗日乘数法

  简单地说,拉格朗日乘数法是用来最小化或最大化多元函数的。如果有一个方程f(x,y,z),在这个方程里的变量之间不是独立的,也就是说这些变量之间是有联系的,这个联系可能是某个方程g(x,y,z) = C;也就是g(x,y,z) = C定义了x,y,z之间的关系,这个关系对变量做出了一定的的限制,我们需要在这个限制下来最小化或最大化f(x,y,z)。

  这里的最值不能简单地使用临界点,因为临界点通常不满足关系方程g。如何解决这个问题呢?当这个限制g(x,y,z)非常简单的时候,我们可以解出其中一个变量的表达式,把这个表达式代入f(x,y,z)后求得最值,这也是中学阶段常用的方法。但问题是,很多时候我们并不能解出x,y,z,因为关系方程g太复杂了,这就需要一个全新的方法求解,拉格朗日乘数法就是其中一种。

寻找最值

  示例:找出双曲线xy = 3上离原点最近的点。

  如果(x, y)是曲线上的点,原点到该点的距离是:

  求离原点最近的点实际上是求f(x,y)的最小值。可以使用一个更容易的方程去掉根号:

  在计算最小值时候有一个限制是:

  把这个较为简单的例子用等高线图表示:

  很明显,当f和g相切的时候,能得到f的最小值。如果把双曲线看作自身的等高线,那么当f的等高线和g的等高线相切时,f值最小。实际上这也是找到最值的一般情形。

  如果两个等高线相切,则二者在切点处的切线也相同,也就是说它们的梯度向量平行,即:

  如果两个向量平行,则其中一个向量是另一个向量的倍数,由此得到:

  这里的λ是一个常数,我们需要做的是找到这个λ和特定的(x,y)使得上式成立。这实际上是把2个变量加一个关系限制的最值问题转换为一个含有3个变量的方程组。

  现在已经通过梯度向量平行,将原来的最值问题转换为一般的方程组,这个方程组被称为拉格朗日方程组,它的解就是最值点。

  接下来就是解方程组,可以将其看作是关于xy的矩阵方程:

  一个满足方程组的解是x = 0, y = 0,但这个解不满约束条件g(x,y) = xy = 3;此外,只有当系数行列式的值是0时,方程才有多个解:

  把两个值分别代入方程组:

  现在可以回答原问题,双曲线xy = 3距离原点最近的点有两个:(31/2, 31/2)和(-31/2, -31/2)。

  在这个例子中,λ就是拉格朗日乘子。

最小值和最大值

  拉格朗日乘数法并不会告诉我们最值的类型,结果可能是最大值、最小值或鞍点,由于存在限制条件,这里也不能像《多变量微积分3——二元函数的极值》那样使用二阶导数判断。那么如何判断是最大值还是最小值呢?只能通过将拉格朗日方程组的解代入问题方程f来判断。举例来说,如果有三组解,代入f后分别是4,6,9,在不存在边界值时,4就是最小值,9就是最大值;如果存在边界,还需要比较边界值。在双曲线的例子中,由于能够确定边界在无穷远处,所以其结果就是最小值。

表面积最小的金字塔

  给定金字塔的体积和底面积(底面的三边确定,分别是a1,a2,a3),如何建造一个表面积最小的金字塔?

  如上图所示,将金字塔模型放入三维坐标系中,底面对应xy轴。由于体积和底面积已知,根据体积公式,高也是定值,那么实际问题就是回答Q点的位置。一种思路是利用向量的叉积计算三角形的面积(参考《线性代数笔记4——向量3(叉积)》):

  展开后将得到一个很长的式子,看起来并不是什么好方法。现在换一种思路,利用三角形面积的几何公式,如下图所示:

  h1是三角形PP1P2的高,设点Q是(x,y,0),则:

  这就转换成了有三个变量的函数,目标是求得f的最小值:

  接下来需要寻找约束条件g。由于a1⊥h1且a1⊥h,所以a1垂直于h1和h所在的平面,a1⊥u1

  上图可知:

  这就是约束条件g:

  知道了f和g,就可以使用拉格朗日乘数法:

  当Q点的位置距离三边距离相等时,金字塔的表面积最小。

  备注:

  f对u1偏导将u2和u3看作常数,这相当于求f(u)的导数,

综合示例

示例1

  在椭圆x+ 4y2 = 4中有内接的矩形,该矩形的边平行于x轴和y轴,找出这些矩形中周长最大的一个。

  如上图所示,长方形的周长函数是f(x,y) = 4x + 4y,约束函数g(x,y) = x+ 4y2 = 4

  由于拉格朗日乘数法无法确定最值的类型,所以还要对函数边界进行计算。当P在椭圆上移动时,如果正好落在x轴上,则长方形退化成直线,此时 ;另一个极值是,所以判定 是最大值,此时长方形的一点的坐标是

示例2

  计算f(x,y,z)= x+ x + 2y2 + 3z2在约束条件x+ y2 + z= 1下的最值。

  由于约束条件是球体,所以不存在边界,只需把这些解导入f即可。当点在(-1,0,0)时,f最小,f = 0;当点在(1/4,0,±151/2/4)时f最大,f = 25/8


  作者:我是8位的

  出处:http://www.cnblogs.com/bigmonkey

  本文以学习、研究和分享为主,如需转载,请联系本人,标明作者和出处,非商业用途!

  扫描二维码关注公众号“我是8位的”

  

ML(附录4)——拉格朗日乘数法的更多相关文章

  1. [Math & Algorithm] 拉格朗日乘数法

    拉格朗日乘数法(Lagrange Multiplier Method)之前听数学老师授课的时候就是一知半解,现在越发感觉拉格朗日乘数法应用的广泛性,所以特意抽时间学习了麻省理工学院的在线数学课程.新学 ...

  2. 《University Calculus》-chaper12-多元函数-拉格朗日乘数法

    求解条件极值的方法:拉格朗日乘数法 基于对多元函数极值方法的了解,再具体的问题中我们发现这样一个问题,在求解f(x,y,z)的极值的时候,我们需要极值点落在g(x,y,z)上这种对极值点有约束条件,通 ...

  3. bzoj2876 [NOI2012]骑行川藏(拉格朗日乘数法)

    题目描述 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因此在每天的骑行 ...

  4. CodeChef TWOROADS(计算几何+拉格朗日乘数法)

    题面 传送门 简要题意:给出\(n\)个点,请求出两条直线,并最小化每个点到离它最近的那条直线的距离的平方和,\(n\leq 100\) orz Shinbokuow 前置芝士 给出\(n\)个点,请 ...

  5. BZOJ3775: 点和直线(计算几何+拉格朗日乘数法)

    题面 传送门 题解 劲啊-- 没有和\(Claris\)一样推,用了类似于\(Shinbokuow\)推已知点求最短直线的方法,结果\(WA\)了好几个小时,拿\(Claris\)代码拍了几个小时都没 ...

  6. BZOJ2876 [Noi2012]骑行川藏 【拉格朗日乘数法】

    题目链接 BZOJ 题解 拉格朗日乘数法 拉格朗日乘数法用以求多元函数在约束下的极值 我们设多元函数\(f(x_1,x_2,x_3,\dots,x_n)\) 以及限制\(g(x_1,x_2,x_3,\ ...

  7. 拉格朗日乘数法 和 KTT条件

    预备知识 令 \(X\) 表示一个变量组(向量) \((x_1, x_2, \cdots, x_n)\) 考虑一个处处可导的函数 \(f(X)\), 为了方便描述, 这里以二元函数为例 对于微分, 考 ...

  8. CodeForces - 813C The Tag Game(拉格朗日乘数法,限制条件求最值)

    [传送门]http://codeforces.com/problemset/problem/813/C [题意]给定整数a,b,c,s,求使得  xa yb zc值最大的实数 x,y,z , 其中x ...

  9. Wannafly模拟赛2 B river(拉格朗日乘数法)

    题目 https://www.nowcoder.com/acm/contest/4/B题意 有n条南北流向的河并列排着,水流速度是v,现在你需要从西岸游到东岸,总共T个时间,你的游泳速度是u,问东岸的 ...

随机推荐

  1. 玩转X-CTR100 | STM32F4 l X-Assistant串口助手控制功能

    我造轮子,你造车,创客一起造起来!塔克创新资讯[塔克社区 www.xtark.cn ][塔克博客 www.cnblogs.com/xtark/ ]      X-CTR100控制器配套的X-Assis ...

  2. mybatis 异常 There is no getter for property named 'bizId' in 'class java.lang.Long'

    mybatis 异常 There is no getter for property named 'bizId' in 'class java.lang.Long' 当使用mybatis进行传参的时候 ...

  3. day 33 线程池有关的

    # cpu 的核心数# import os# print(os.cpu_count()) ## 爬虫的进程和线程的应用# 第一步 虚拟一个浏览器下载 在cmd 里输入 pip install requ ...

  4. mysql三范式

    第一范式:有主键,具有原子性,字段不可分割. 第二范式:完全依赖,没有部分依赖. 第三范式:没有传递依赖. 总结:数据库设计尽量遵循三范式,但是还是根据实际情况进行取舍,有时候会拿冗余还速度,最总用的 ...

  5. Example of Abstract Class

    The Vehicle class has abstract members that must be implemented by the Car class or any other class ...

  6. winform datatable 或datagridview中添加列

    DataGridViewCheckBoxColumn dg = new DataGridViewCheckBoxColumn(); dg.HeaderText = "选择"; dg ...

  7. 内存直读技术DMA

    DMA(Direct Memory Access) DMA(Direct Memory Access)即直接存储器存取,是一种快速传送数据的机制. 工作原理 DMA是指外部设备不通过CPU而直接与系统 ...

  8. 【转载】Vue项目自动转换 px 为 rem,高保真还原设计图

    前端开发中还原设计图的重要性毋庸置疑,目前来说应用最多的应该也还是使用rem.然而很多人依然还是处于刀耕火种的时代,要么自己去计算rem值,要么依靠编辑器安装插件转换. 而本文的目标就是通过一系列的配 ...

  9. vue 之 key

    key 的特殊属性主要用在 Vue的虚拟DOM算法,在新旧nodes对比时辨识VNodes.如果不使用key,Vue会使用一种最大限度减少动态元素并且尽可能的尝试修复/再利用相同类型元素的算法.使用k ...

  10. ECONOMETRICS CHAPTER3

    前几天看王垠的一篇文章谈数学与编程,说数学公式之所以难以理解是因为缺乏统一的形式,而且经常有未定义的变量出现.看这本书时也正有此感,所以有时不必要拘泥公式是否前后一致,理解意思要紧. ♣普通最小二乘法 ...