luogu P1776 宝物筛选_NOI导刊2010提高(02)
Sto flashhu orz flash太强啦
多重背包裸题(逃
使用压维大法,\(f_i\)为总重量为\(i\)时的答案
对于每种物品,记\(w\)为单个的重量,\(v\)为单个的价值,\(m\)为数量,列出转移方程$$f_i=min{f_{i-jw}+jv}(0\leq j\leq m,i-jw \geq 0)$$
数据范围较大,我们可以二进制优化
同样也可以用单调队列,令\(i=kw+b\)(按照余数分组)原方程可以变为$$f_i=min{f_{kw+b-jw}+(k+j-k)v}(...)$$$$=>\ f_i=min{f_{(k-j)w+b}-(k-j)v}+kv(...)$$
对于每个余数\(b\)转移,从后往前枚举\(k\),用单调队列维护长度为\(m\)的\(f_{(k-j)w+b}-(k-j)v\),如果队首超出范围就弹队首,然后用队首转移,然后维护队尾,插入当前元素一堆废话
#include<bits/stdc++.h>
#define LL long long
#define il inline
#define re register
#define db double
#define max(a,b) ((a)>(b)?(a):(b))
using namespace std;
const int N=40000+10;
il LL rd()
{
re LL x=0,w=1;re char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
LL f[N],n,m,q[N][2],an;
int hd,tl;
int main()
{
n=rd(),m=rd();
while(n--)
{
LL v=rd(),w=rd(),p=rd();
for(re int b=0;b<w;b++)
{
int nn=(m-b)/w,i,j;
hd=1,tl=0;
for(i=nn-1;i>=max(nn-p,0);i--)
{
LL xx=f[i*w+b]-i*v;
while(hd<=tl&&xx>q[tl][0]) --tl;
q[++tl][0]=xx,q[tl][1]=i;
}
for(j=nn;j>=0;i--,j--)
{
while(hd<=tl&&q[hd][1]>=j) ++hd;
if(hd<=tl) f[j*w+b]=max(f[j*w+b],q[hd][0]+j*v);
if(i<0) continue;
LL xx=f[i*w+b]-i*v;
while(hd<=tl&&xx>q[tl][0]) --tl;
q[++tl][0]=xx,q[tl][1]=i;
}
}
}
for(int i=1;i<=m;i++) an=max(an,f[i]);
printf("%lld\n",an);
return 0;
}
luogu P1776 宝物筛选_NOI导刊2010提高(02)的更多相关文章
- Luogu P1776 宝物筛选_NOI导刊2010提高(02)(多重背包模版)
传送门 多重背包板子题, 多重背包就是每种东西有好几个,可以把它拆分成一个一个的01背包 优化:二进制拆分(拆成1+2+4+8+16+...) 比如18=1+2+4+8+3,可以证明18以内的任何数都 ...
- P1776 宝物筛选_NOI导刊2010提高(02)&& 多重背包二进制优化
多重背包, 要求 \(N\log N\) 复杂度 Solution 众所周和, \(1-N\) 之内的任何数可以由 \(2^{0}, 2^{1}, 2^{2} ... 2^{\log N}, N - ...
- 洛谷P1776 宝物筛选_NOI导刊2010提高(02)
P1776 宝物筛选_NOI导刊2010提高(02) 题目描述 终于,破解了千年的难题.小FF找到了王室的宝物室,里面堆满了无数价值连城的宝物……这下小FF可发财了,嘎嘎.但是这里的宝物实在是太多了, ...
- P1776 宝物筛选_NOI导刊2010提高(02)
题目描述 终于,破解了千年的难题.小FF找到了王室的宝物室,里面堆满了无数价值连城的宝物……这下小FF可发财了,嘎嘎.但是这里的宝物实在是太多了,小FF的采集车似乎装不下那么多宝物.看来小FF只能含泪 ...
- P1776 宝物筛选_NOI导刊2010提高(02)(背包的二进制优化)
题目描述 终于,破解了千年的难题.小FF找到了王室的宝物室,里面堆满了无数价值连城的宝物……这下小FF可发财了,嘎嘎.但是这里的宝物实在是太多了,小FF的采集车似乎装不下那么多宝物.看来小FF只能含泪 ...
- 洛谷P1776 宝物筛选_NOI导刊2010提高(02)(多重背包,单调队列)
为了学习单调队列优化DP奔向了此题... 基础的多重背包就不展开了.设\(f_{i,j}\)为选前\(i\)个物品,重量不超过\(j\)的最大价值,\(w\)为重量,\(v\)为价值(蒟蒻有强迫症,特 ...
- luogu P1801 【黑匣子_NOI导刊2010提高(06)】
这里提供一个简单实现新思路: . 约定: 以下n指代的数的数量,不是题目所指的n 以下m指代询问的数量,不是题目所指的m (不好意思,这是本人习惯) 分块+堆 **堆一次只能输出堆顶的一个元素,如果我 ...
- LUOGU P1779 魔鬼杀手_NOI导刊2010提高(03)
传送门 解题思路 背包,首先先用aoe都打残然后单伤补刀,用f[i]表示AOE打了i的伤害的最小花费,g[i]表示单伤打了i的伤害的最小花费. 代码 #include<iostream> ...
- Luogu P1801 黑匣子_NOI导刊2010提高(06)
P1801 黑匣子_NOI导刊2010提高(06) 题目描述 Black Box是一种原始的数据库.它可以储存一个整数数组,还有一个特别的变量i.最开始的时候Black Box是空的.而i等于0.这个 ...
随机推荐
- 重温Delphi之:面向对象
任何一门语言,只要具备了"封装,继承,多态"这三项基本能力,不管其实现方式是直接或曲折.复杂或简洁,就可以称之为“面向对象”的语言. Delphi当年的迅速走红,是以其RAD快速开 ...
- Ajax 響應
獲取服務器的響應內容,可以使用responseText或者responseXML屬性 responseText:獲取字符串形式的相應內容,除了XML的響應內容以外可用 responseXML:獲取XM ...
- ABP框架学习
一.总体与公共结构 1,ABP配置 2,多租户 3,ABP Session 4,缓存 5,日志 6,设置管理 7,Timing 8,ABPMapper 9,发送电子邮件 二.领域层 10,实体 11, ...
- unwrap bug
https://cn.mathworks.com/matlabcentral/newsreader/view_thread/93276
- python 从filelist.txt中拷贝文件到另一文件夹中
#! python #coding:utf-8 ##!/usr/bin/python # Filename : fileCp.py import sys import os import shutil ...
- git 在局域网新建远程库及本地开发常用命令
git 版本直接在官网下载即可:https://git-scm.com/downloads 安装后有git bash与git gui可以用. 1.在远程服务器上新建裸仓库 git init --ba ...
- Spring StringRedisTemplate 配置
1 先看pom.xml <dependency> <groupId>org.apache.commons</groupId> <artifactId>c ...
- Hibernate的继承映射
对象模型示例: 继承映射的实现方式有以下三种: (一)每棵类继承树一张表 (二)每个类一张表 (三)每个子类一张表 (一)每棵类继承树一张表 关系模型如下: 映射文件如下: <hibernate ...
- day13 生成器 三元运算 列表解析
本质上来说生成器迭代器都是一种数据类型,如果你直接打印生成器是无法得出值的,会得到一串内存地址,即一个对象想要得到生成器的值必须要用for或者next,list等来获取 生成器生成器就是一个可迭代对象 ...
- [luogu3455][POI2007]ZAP-Queries【莫比乌斯反演】
题目描述 FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d.作为FGD的同学,FGD希望得 ...