求关于x的同余方程 ax ≡ 1(mod b) 的最小正整数解。

输入格式
输入只有一行,包含两个正整数a,b,用一个空格隔开。

输出格式
输出只有一行,包含一个正整数x,表示最小正整数解。

输入数据保证一定有解。

数据范围
2≤a,b≤2∗109
输入样例:
3 10
输出样例:
7

题意:要求满足题给的式子的最小正整数x

思路:线性同余方程的经典问题

ax ≡ m(mod b)  (原型)

ax ≡ 1(mod b)   ->    ax - by = 1(因为%b就相当于ax减掉若干个b)

说明只有gcd(a,b)=1时才有解

这里我们就可以化成扩展欧几里得来求解

扩欧:   ax+by=gcd(a,b)  ,肯定有x,y能满足这个条件

证明:

1.gcd(a,b)=gcd(b,a%b)

2. 欧几里得算法算到最后,当b=0时,a*1+0*0=gcd(a,0)

3. bx+a%by = gcd(b,a%b)   ->    bx +  (a-a/b*b)y  = gcd(b,a%b)   ->   ay +  b(x-a/b*by) = gcd(b,a%b)  ->  ax' + by' = gcd(a,b)

所以由2我们可知最简形式有x,y满足定理,由1可以推出3,由3可知可以由任何一步推出另一步,所以我们可以用最简形式推出所有的

所以证明扩欧定理的正确性

线性同余方程可以化简出扩欧的式子,然后求出x

然后通解为  x+num*b

这里要求为正整数,所以我们要+b%b

#include<bits/stdc++.h>
#define maxn 100005
#define mod 1000000007
using namespace std;
typedef long long ll;
ll x,y;
ll exgcd(ll a,ll b){
if(b==){
x=;
y=;
return a;
}
ll z=exgcd(b,a%b);
ll t=x;
x=y;
y=t-a/b*y;
return z;
}
int main(){
ll a,b;
cin>>a>>b;
ll z=exgcd(a,b);
//cout<<z<<endl;
cout<<(x%b+b)%b<<endl;
}

AcWing 203. 同余方程 (线性同余方程)打卡的更多相关文章

  1. AcWing 204. 表达整数的奇怪方式 (线性同余方程组)打卡

    给定2n个整数a1,a2,…,ana1,a2,…,an和m1,m2,…,mnm1,m2,…,mn,求一个最小的整数x,满足∀i∈[1,n],x≡mi(mod ai)∀i∈[1,n],x≡mi(mod  ...

  2. 数论 - n元线性同余方程的解法

    note:n元线性同余方程因其编程的特殊性,一般在acm中用的很少,这里只是出于兴趣学了一下 n元线性同余方程的概念: 形如:(a1*x1+a2*x2+....+an*xn)%m=b%m       ...

  3. POJ2115 C Looooops(线性同余方程)

    无符号k位数溢出就相当于mod 2k,然后设循环x次A等于B,就可以列出方程: $$ Cx+A \equiv B \pmod {2^k} $$ $$ Cx \equiv B-A \pmod {2^k} ...

  4. POJ1061 青蛙的约会(线性同余方程)

    线性同余方程$ ax \equiv b \pmod n$可以用扩展欧几里得算法求解. 这一题假设青蛙们跳t次后相遇,则可列方程: $$ Mt+X \equiv Nt+Y \pmod L$$ $$ (M ...

  5. POJ 2115 C Looooops (扩展欧几里德 + 线性同余方程)

    分析:这个题主要考察的是对线性同余方程的理解,根据题目中给出的a,b,c,d,不难的出这样的式子,(a+k*c) % (1<<d) = b; 题目要求我们在有解的情况下求出最小的解,我们转 ...

  6. poj2115-C Looooops -线性同余方程

    线性同余方程的模板题.和青蛙的约会一样. #include <cstdio> #include <cstring> #define LL long long using nam ...

  7. 扩展欧几里得,解线性同余方程 逆元 poj1845

    定理:对于任意整数a,b存在一堆整数x,y,满足ax+by=gcd(a,b) int exgcd(int a,int b,int &x,int &y){ ){x=,y=;return ...

  8. POJ 1061 - 青蛙的约会 - [exgcd求解一元线性同余方程]

    先上干货: 定理1: 如果d = gcd(a,b),则必能找到正的或负的整数k和l,使ax + by = d. (参考exgcd:http://www.cnblogs.com/dilthey/p/68 ...

  9. HDU3579:Hello Kiki(解一元线性同余方程组)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=3579 题目解析:求一元线性同余方程组的最小解X,需要注意的是如果X等于0,需要加上方程组通解的整数区间lc ...

随机推荐

  1. getcwd函数学习

    getcwd 函数原型:char *getcwd( char *buffer, int maxlen ); 功 能:获取当前工作目录 参数说明:getcwd()会将当前工作目录的绝对路径复制到参数bu ...

  2. hdu 4336 Card Collector(状压dp/Min-Max反演)

    传送门 解题思路 第一种方法是状压\(dp\),设\(f(S)\)为状态\(S\)到取完的期望步数,那么\(f(S)\)可以被自己转移到,还可以被\(f(S|(1<<i))\)转移到,\( ...

  3. HDU 1828 线段树+扫描线(计算矩形周长并)

    题意:给你n个矩形,然后矩形有可能重叠,要你求周长 思路:首先碰到这种矩形在数轴上那么第一反应应该想到的是扫描线, 做周长我们有两种方法 第一种,我们可以分开两部分求,第一遍求x轴上的贡献,第二遍求y ...

  4. Linux系统Centos查看IP地址,不显示IP地址或者显示127.0.0.1

    1.桌面界面 右上角有个电脑的图标,鼠标悬停会显示no network connect 点击一下图标,选择连接的网络则ok 2.命令行界面 在命令行界面输入 vi  /etc/sysconfig/ne ...

  5. eclipse导入工程时出现大红色感叹号(转)

    转载文章:http://blog.csdn.net/xiaotaibai2008/article/details/6365334 因为也遇到了同样的问题,所以google了以下,希望对于我这个小菜鸟有 ...

  6. (转)使用OpenGL显示图像(五)添加移动

    添加移动 编写:jdneo - 原文:http://developer.android.com/training/graphics/opengl/motion.html 转:http://hukai. ...

  7. c/c++ int 范围的原因

    在C语言中, signed char 类型的范围为-128~127,每本教科书上也这么写,但是没有哪一本书上(包括老师)也不会给你为什么是-128~127,这个问题貌似看起来也很简单容易, 以至于不用 ...

  8. 在windows命令行下安装和使用babel(es6to5)

    在自己的目录下新建一个babel-test/目录 进入这个目录 1. 安装babel命令和转换库:      npm install babel-cli      npm install babel- ...

  9. spss乱码问题解决

    spss乱码问题解决 方法1:网友kuangsir6提供 选择字体为:DFKai-SB 格式(我并没有找到这个格式) 方法是 SPSS(PASW)---Edit---Options---Viewer- ...

  10. 【转】理解JMX之介绍和简单使用

    原文链接:https://blog.csdn.net/lmy86263/article/details/71037316 近期在项目上需要添加一些功能,想把一个开源工程整合进来,虽说是整合,但是觉得跟 ...