AcWing 203. 同余方程 (线性同余方程)打卡
求关于x的同余方程 ax ≡ 1(mod b) 的最小正整数解。
输入格式
输入只有一行,包含两个正整数a,b,用一个空格隔开。
输出格式
输出只有一行,包含一个正整数x,表示最小正整数解。
输入数据保证一定有解。
数据范围
2≤a,b≤2∗109
输入样例:
3 10
输出样例:
7
题意:要求满足题给的式子的最小正整数x
思路:线性同余方程的经典问题
ax ≡ m(mod b) (原型)
ax ≡ 1(mod b) -> ax - by = 1(因为%b就相当于ax减掉若干个b)
说明只有gcd(a,b)=1时才有解
这里我们就可以化成扩展欧几里得来求解
扩欧: ax+by=gcd(a,b) ,肯定有x,y能满足这个条件
证明:
1.gcd(a,b)=gcd(b,a%b)
2. 欧几里得算法算到最后,当b=0时,a*1+0*0=gcd(a,0)
3. bx+a%by = gcd(b,a%b) -> bx + (a-a/b*b)y = gcd(b,a%b) -> ay + b(x-a/b*by) = gcd(b,a%b) -> ax' + by' = gcd(a,b)
所以由2我们可知最简形式有x,y满足定理,由1可以推出3,由3可知可以由任何一步推出另一步,所以我们可以用最简形式推出所有的
所以证明扩欧定理的正确性
线性同余方程可以化简出扩欧的式子,然后求出x
然后通解为 x+num*b
这里要求为正整数,所以我们要+b%b
#include<bits/stdc++.h>
#define maxn 100005
#define mod 1000000007
using namespace std;
typedef long long ll;
ll x,y;
ll exgcd(ll a,ll b){
if(b==){
x=;
y=;
return a;
}
ll z=exgcd(b,a%b);
ll t=x;
x=y;
y=t-a/b*y;
return z;
}
int main(){
ll a,b;
cin>>a>>b;
ll z=exgcd(a,b);
//cout<<z<<endl;
cout<<(x%b+b)%b<<endl;
}
AcWing 203. 同余方程 (线性同余方程)打卡的更多相关文章
- AcWing 204. 表达整数的奇怪方式 (线性同余方程组)打卡
给定2n个整数a1,a2,…,ana1,a2,…,an和m1,m2,…,mnm1,m2,…,mn,求一个最小的整数x,满足∀i∈[1,n],x≡mi(mod ai)∀i∈[1,n],x≡mi(mod ...
- 数论 - n元线性同余方程的解法
note:n元线性同余方程因其编程的特殊性,一般在acm中用的很少,这里只是出于兴趣学了一下 n元线性同余方程的概念: 形如:(a1*x1+a2*x2+....+an*xn)%m=b%m ...
- POJ2115 C Looooops(线性同余方程)
无符号k位数溢出就相当于mod 2k,然后设循环x次A等于B,就可以列出方程: $$ Cx+A \equiv B \pmod {2^k} $$ $$ Cx \equiv B-A \pmod {2^k} ...
- POJ1061 青蛙的约会(线性同余方程)
线性同余方程$ ax \equiv b \pmod n$可以用扩展欧几里得算法求解. 这一题假设青蛙们跳t次后相遇,则可列方程: $$ Mt+X \equiv Nt+Y \pmod L$$ $$ (M ...
- POJ 2115 C Looooops (扩展欧几里德 + 线性同余方程)
分析:这个题主要考察的是对线性同余方程的理解,根据题目中给出的a,b,c,d,不难的出这样的式子,(a+k*c) % (1<<d) = b; 题目要求我们在有解的情况下求出最小的解,我们转 ...
- poj2115-C Looooops -线性同余方程
线性同余方程的模板题.和青蛙的约会一样. #include <cstdio> #include <cstring> #define LL long long using nam ...
- 扩展欧几里得,解线性同余方程 逆元 poj1845
定理:对于任意整数a,b存在一堆整数x,y,满足ax+by=gcd(a,b) int exgcd(int a,int b,int &x,int &y){ ){x=,y=;return ...
- POJ 1061 - 青蛙的约会 - [exgcd求解一元线性同余方程]
先上干货: 定理1: 如果d = gcd(a,b),则必能找到正的或负的整数k和l,使ax + by = d. (参考exgcd:http://www.cnblogs.com/dilthey/p/68 ...
- HDU3579:Hello Kiki(解一元线性同余方程组)
题目:http://acm.hdu.edu.cn/showproblem.php?pid=3579 题目解析:求一元线性同余方程组的最小解X,需要注意的是如果X等于0,需要加上方程组通解的整数区间lc ...
随机推荐
- 学习java web中的listener
web.xml里的顺序为:context-param->listener->filter->servlet 监听器是需要新建一个类,然后按监听的对象继承:ServletContext ...
- select into outfile的sql语句
SELECT INTO…OUTFILE语句把表数据导出到一个文本文件中,并用LOAD DATA …INFILE语句恢复数据.但是这种方法只能导出或导入数据的内容,不包括表的结构,如果 ...
- B2C网站的系统
管理系统 管理系统:主要做业务上的管理和内容输出,常见的有CMS(内容管理系统).CRM.SCM等, 1 供应商作为第三方,有独立开发的系统(SRM)和IO系统对接.以确定订单的状态.当然IO系统里面 ...
- JS-拷贝对象
As it is well known to us all, 拷贝对象分为浅拷贝和深拷贝,深拷贝只会复制地址,深拷贝才会复制内容,那么 JS 如何进行这两种拷贝呢? # 浅拷贝 ## Object.a ...
- 31. Git与Github
Github介绍 GitHub是一个面向开源及私有软件项目的托管平台,因为只支持git 作为唯一的版本库格式进行托管,故名gitHub. GitHub于2008年4月10日正式上线,除了Git代码仓库 ...
- Linux内核TSS的使用
参见文章:http://blog.chinaunix.net/uid-22695386-id-272098.html linux2.4之前的内核有进程最大数的限制,受限制的原因是,每一个进程都有自已的 ...
- POJ 2254 Globetrotter (计算几何 - 球面最短距离)
题目链接:POJ 2254 Description As a member of an ACM programming team you'll soon find yourself always tr ...
- python:TypeError: main() takes 0 positional arguments but 1 was given
TypeError: main() takes 0 positional arguments but 1 was given def main(self): 括号里加上self就好了
- [已解决]报错: Version in docker-compose is unsupported
docker compose将解析版本为"2",而不是"3.3".应该改为: version: "2"
- MOV EAX,DWORD PTR SS:[EBP+8]
nasm来写可以写成mov eax,dword ptr [ebp + 8]理由:ebp和esp默认是ss段,所以根本不用显式说明. eax,ebx,ecx,edx,edi,esi默认 ...