tensorflow中的一些操作和numpy中的很像,下面列出几个比较常见的操作

import tensorflow as tf

#定义三行四列的零矩阵
tf.zeros([3,4])
#定义两行三列的全1矩阵
tf.ones([2,3])
#定义常量
tensor = tf.constant([1,2,3,4,5,6,7])
#定义两行三列全为-1的矩阵
tensor = tf.constant(-1.0.shape=[2,3])
#[10 11 12]
tf.linspace(10.0,12.0,3,name="linespace") tf.range(start,end,delta)
#构造两行三列的均值为mean,方差为stddev的符合正态分布的矩阵
norm = tf.random_normal([2,3],mean=-1,stddev=4)
#洗牌操作
c = tf.constant([[1,2],[3,4],[5,6]])
shuff = tf.random_shuffle(c)

sess = tf.Session()
 print(sess.run(norm))
 print(sess.run(shuff))

#赋个初始值
state = tf.Variable(0)
#初始值加1
new_value = tf.add(state, tf.constant(1))
#更新
update = tf.assign(state, new_value)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print(sess.run(state))
for _ in range(3):
sess.run(update)
print(sess.run(state))
#numpy向tensorflow转换
import numpy as np
a = np.zeros((3,3))
ta = tf.convert_to_tensor(a)
with tf.Session() as sess:
print(sess.run(ta))
#tensorflow中的placeholder
input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)
output = tf.multiply(input1,input2)
with tf.Session() as sess:
print(sess.run([output],feed_dict={input1:[7.],input2:[2.]}))

tensorflow学习笔记三----------基本操作的更多相关文章

  1. tensorflow学习笔记三:实例数据下载与读取

    一.mnist数据 深度学习的入门实例,一般就是mnist手写数字分类识别,因此我们应该先下载这个数据集. tensorflow提供一个input_data.py文件,专门用于下载mnist数据,我们 ...

  2. tensorflow学习笔记(三十四):Saver(保存与加载模型)

    Savertensorflow 中的 Saver 对象是用于 参数保存和恢复的.如何使用呢? 这里介绍了一些基本的用法. 官网中给出了这么一个例子: v1 = tf.Variable(..., nam ...

  3. tensorflow学习笔记(三十九):双向rnn

    tensorflow 双向 rnn 如何在tensorflow中实现双向rnn 单层双向rnn 单层双向rnn (cs224d) tensorflow中已经提供了双向rnn的接口,它就是tf.nn.b ...

  4. tensorflow学习笔记(三):实现自编码器

    黄文坚的tensorflow实战一书中的第四章,讲述了tensorflow实现多层感知机.Hiton早年提出过自编码器的非监督学习算法,书中的代码给出了一个隐藏层的神经网络,本人扩展到了多层,改进了代 ...

  5. 深度学习-tensorflow学习笔记(2)-MNIST手写字体识别

    深度学习-tensorflow学习笔记(2)-MNIST手写字体识别超级详细版 这是tf入门的第一个例子.minst应该是内置的数据集. 前置知识在学习笔记(1)里面讲过了 这里直接上代码 # -*- ...

  6. tensorflow学习笔记(4)-学习率

    tensorflow学习笔记(4)-学习率 首先学习率如下图 所以在实际运用中我们会使用指数衰减的学习率 在tf中有这样一个函数 tf.train.exponential_decay(learning ...

  7. tensorflow学习笔记——使用TensorFlow操作MNIST数据(2)

    tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例 ...

  8. tensorflow学习笔记——自编码器及多层感知器

    1,自编码器简介 传统机器学习任务很大程度上依赖于好的特征工程,比如对数值型,日期时间型,种类型等特征的提取.特征工程往往是非常耗时耗力的,在图像,语音和视频中提取到有效的特征就更难了,工程师必须在这 ...

  9. tensorflow学习笔记——VGGNet

    2014年,牛津大学计算机视觉组(Visual Geometry Group)和 Google DeepMind 公司的研究员一起研发了新的深度卷积神经网络:VGGNet ,并取得了ILSVRC201 ...

随机推荐

  1. 4. ClustrixDB CLX命令详解

    Clustrix提供了一个名为clx的实用程序来管理其分布式ClustrixDB数据库. 命令在 /opt/clustrix/bin/ 下面 sudo su - clxm 用户即可使用 clx hel ...

  2. Windows和Linux下搭建J2sdk的环境

    J2SDK 作为jsp系统配置中必不可少的组件,越来越多的得到应用.下来是我整理的以往工作时搜集的资料.使用时方便查询,希望对广大的工程师有帮助. windows服务器环境下 j2sdk 的安装和环境 ...

  3. selenium+常见操作

    1.多窗口操作 有些页面的链接打开后,会重新打开一个窗口,对于这种情况,想在新页面上操作,就得先切换窗口了.获取窗口的唯一标识用句柄表示,所以只需要切换句柄,我们就能在多个页面上灵活自如的操作了. 句 ...

  4. android日志优先级

    Android 的日志分为如下几个优先级(priority): V —— Verbose(最低,输出得最多) D —— Debug I —— Info W —— Warning E —— Error ...

  5. 大数据笔记(二十六)——Scala语言的高级特性

    ===================== Scala语言的高级特性 ========================一.Scala的集合 1.可变集合mutable 不可变集合immutable / ...

  6. webpack配置之webpack.config.js文件配置

    webpack配置之webpack.config.js文件配置 webpack.config.js webpack resolve  1.总是手动的输入webpack的输入输出文件路径,是一件非常繁琐 ...

  7. leetcode-mid-math -171. Excel Sheet Column Number

    mycode   90.39% class Solution(object): def titleToNumber(self, s): """ :type s: str ...

  8. SQLAlcvchem

    一.安装(稳定版的1.2.17) 二.一般使用(切记切记不要使用模块的名字作为项目名字,否则会出现玄学解决不了的问题------坑) #.导入SQLALchemy from sqlalchemy.ex ...

  9. 网站模板-Layui:Layui

    ylbtech-网站模板-Layui:百科 layui,是一款采用自身模块规范编写的前端 UI 框架,遵循原生 HTML/CSS/JS 的书写与组织形式,门槛极低,拿来即用.其外在极简,却又不失饱满的 ...

  10. Ubuntu C/C++的编译环境

    Ubuntu缺省情况下,并没有提供C/C++的编译环境,因此还需要手动安装.但是如果单独安装gcc以及g++比较麻烦,幸运的是,Ubuntu提供了一个build-essential软件包.查看该软件包 ...