This is an introduction to pandas categorical data type, including a short comparison with R’s factor.
Categoricals are a pandas data type, which correspond to categorical variables in statistics: a variable, which can take on only a limited, and usually fixed, number of possible values (categories; levels in R). Examples are gender, social class, blood types, country affiliations, observation time or ratings via Likert scales.

In contrast to statistical categorical variables, categorical data might have an order (e.g. ‘strongly agree’ vs ‘agree’ or ‘first observation’ vs. ‘second observation’), but numerical operations (additions, divisions, ...) are not possible.

All values of categorical data are either in categories or np.nan. Order is defined by the order of categories, not lexical order of the values. Internally, the data structure consists of a categories array and an integer array of codes which point to the real value in the categories array.

The categorical data type is useful in the following cases:

  • A string variable consisting of only a few different values. Converting such a string variable to a categorical variable will save some memory, see here.
  • The lexical order of a variable is not the same as the logical order (“one”, “two”, “three”). By converting to a categorical and specifying an order on the categories, sorting and min/max will use the logical order instead of the lexical order, see here.
  • As a signal to other python libraries that this column should be treated as a categorical variable (e.g. to use suitable statistical methods or plot types).

概括:Categorical Data数据类型就类似“性别”、“血型”、“班级”等,只能是一些固定的“值“。Categorical Data可以有不同级别,但是不能用于数值计算。

Categorical Data的更多相关文章

  1. Pandas的Categorical Data

    http://liao.cpython.org/pandas15/ Docs » Pandas的Categorical Data类型 15. Pandas的Categorical Data panda ...

  2. Pandas的Categorical Data类型

    pandas从0.15版开始提供分类数据类型,用于表示统计学里有限且唯一性数据集,例如描述个人信息的性别一般就男和女两个数据常用'm'和'f'来描述,有时也能对应编码映射为0和1.血型A.B.O和AB ...

  3. [论文]A Link-Based Cluster Ensemble Approach for Categorical Data Clustering

    http://www.cnblogs.com/Azhu/p/4137131.html 这篇论文建议先看了上面这一遍,两篇作者是一样的,方法也一样,这一片论文与上面的不同点在于,使用的数据集是目录数据, ...

  4. Factoextra R Package: Easy Multivariate Data Analyses and Elegant Visualization

    factoextra is an R package making easy to extract and visualize the output of exploratory multivaria ...

  5. pandas入门10分钟——serries其实就是data frame的一列数据

    10 Minutes to pandas This is a short introduction to pandas, geared mainly for new users. You can se ...

  6. MAT 4378 – MAT 5317, Analysis of categorical

    MAT 4378 – MAT 5317, Analysis of categorical data, Assignment 3 1MAT 4378 – MAT 5317, Analysis of ca ...

  7. Data Visualization and D3.js 笔记(1)

    课程地址: https://classroom.udacity.com/courses/ud507 什么是数据可视化? 高效传达一个故事/概念,探索数据的pattern 通过颜色.尺寸.形式在视觉上表 ...

  8. 第七章 人工智能,7.6 DNN在搜索场景中的应用(作者:仁重)

    7.6 DNN在搜索场景中的应用 1. 背景 搜索排序的特征分大量的使用了LR,GBDT,SVM等模型及其变种.我们主要在特征工程,建模的场景,目标采样等方面做了很细致的工作.但这些模型的瓶颈也非常的 ...

  9. 10分钟学习pandas

    10 Minutes to pandas This is a short introduction to pandas, geared mainly for new users. You can se ...

随机推荐

  1. centos6.X mysql 5.1 主主配置

    1.配置文件 A库的配置文件: 在 /etc/my.cnf [mysqld] 段 新增: server_id= # log_bin 日志路径.格式以及删除时间(30天) log_bin=/var/li ...

  2. centos 6.10源码安装mysql5.5.62实验

    查看系统版本 [root@ABC ~]# cat /etc/redhat-release CentOS release 6.10 (Final) 下载mysql5.5.62源码包,解压后安装 tar ...

  3. 清北学堂2019NOIP提高储备营DAY4

    今天只有一上午,讲的东西不多,这里就整理一下高精的东西,数论部分请见my blog 高精度: 先讲一讲进制问题:十进制的二进制表示:以10为例, 10的二进制表示为1010 10的三进制表示为101 ...

  4. WPF UI Close button

    <Window x:Class="WpfApplication1.MainWindow" xmlns="http://schemas.microsoft.com/w ...

  5. 阶段1 语言基础+高级_1-3-Java语言高级_06-File类与IO流_08 转换流_1_字符编码和字符集

     

  6. 阶段1 语言基础+高级_1-3-Java语言高级_04-集合_06 Set集合_6_LinkedHashSet集合

    把www挪到最上面,第一个加入到哈希

  7. SpringBoot错误经验

    1.在application.properties 添加 debug=true,可以看见项目的执行流程有助于调bug 2.如果错误显示端口号被占用 cmd 步骤1 查看端口号应用情况:netstat ...

  8. vue猜数字游戏

    <!doctype html> <html> <head> <meta charset="UTF-8"> <title> ...

  9. 应用安全 - 安全设备 - WAF原理/检测/绕过

    原理 基于Cookie值 Citrix Netscaler(2013年使用广泛) “Citrix Netscaler”会在HTTP返回头部Cookie位置加入“ns_af”的值,可以以此判断为Citr ...

  10. 003/node.js--代理服务(解决跨域问题)

    业务描述: 1.web前端发送http请求 2.web后端为https协议 如何保证web前端发送http请求到web后端(跨域问题:域名不一致即跨域), 因此用node.js写了个代理服务,转发前端 ...