[bzoj1041] [洛谷P2508] [HAOI2008] 圆上的整点
Description###
求一个给定的圆(x2+y2=r^2),在圆周上有多少个点的坐标是整数。
Input###
只有一个正整数n,n<=2000 000 000
Output###
整点个数
Sample Input###
4
Sample Output###
4
想法##
嗯哼,一道数学题。
开始推柿子。
首先我们只需求出满足 $ x^2 + y^2 = z^2 $ 的正整数对数即可,乘以4后再加4便为答案
y^2=z^2-x^2=(z+x)(z-x) \\
设\quad d=gcd(z+x,z-x) \\
那么 \quad y^2=d^2 \frac{z+x}{d} \frac{z-x}{d} \\
这里面 \frac{z+x}{d} 与 \frac{z-x}{d} 互质,所以 \frac{z+x}{d} 和 \frac{z-x}{d} 都为完全平方数 \\
设 \frac{z+x}{d}为A, \frac{z-x}{d}为B \\
设A=a^2,B=b^2 \\
a^2+b^2=\frac{2z}{d} \\
故,我们可以枚举2z的每一个约数d,然后再枚举每一对满足a^2+b^2=\frac{2z}{d}的a和b \\
得到a,b后要带回去算出A,B,判断是否gcd(A,B)=1且A \neq B
\]
代码##
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long ll;
ll n,m,ans=0;
ll gcd(ll a,ll b) { return b ? gcd(b,a%b) : a; }
int main()
{
scanf("%d",&n);
m=sqrt(n*2);
for(ll d=1;d<=m;d++){
if((n*2)%d) continue;
for(ll a=1;a*a*2<=d;a++){
ll b=sqrt(d-a*a);
if(b*b!=d-a*a) continue;
ll A=a*a,B=b*b;
if(gcd(A,B)!=1 || A==0 || B==0 || A==B) continue;
ans+=4;
}
for(ll a=1;a*a*2<=n*2/d;a++){
ll b=sqrt(n*2/d-a*a);
if(b*b!=n*2/d-a*a) continue;
ll A=a*a,B=b*b;
if(gcd(A,B)!=1 || A==0 || B==0 || A==B) continue;
ans+=4;
}
}
printf("%lld\n",ans+4);
return 0;
}
[bzoj1041] [洛谷P2508] [HAOI2008] 圆上的整点的更多相关文章
- 洛谷P2508 [HAOI2008]圆上的整点
题目描述 求一个给定的圆$ (x^2+y^2=r^2) $,在圆周上有多少个点的坐标是整数. 输入格式 \(r\) 输出格式 整点个数 输入输出样例 输入 4 输出 4 说明/提示 \(n\le 20 ...
- 2021.12.06 P2508 [HAOI2008]圆上的整点(数论+ π )
2021.12.06 P2508 [HAOI2008]圆上的整点(数论+ \(\pi\) ) https://www.luogu.com.cn/problem/P2508 题意: 求一个给定的圆 \( ...
- P2508 [HAOI2008]圆上的整点
题目描述 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. 输入输出格式 输入格式: r 输出格式: 整点个数 输入输出样例 输入样例#1: 复制 4 输出样例#1: 复制 ...
- luogu P2508 [HAOI2008]圆上的整点
传送门 推荐去bzoj看个视频了解一下 不要妄想视频直接告诉你题解 但是视频告诉了你后面要用的东西 首先我们要求的是\(x^2+y^2=n^2(x,y\in Z)\)的\((x,y)\)对数,可以转化 ...
- 【BZOJ1041】[HAOI2008]圆上的整点
[BZOJ1041][HAOI2008]圆上的整点 题面 bzoj 洛谷 题解 不妨设\(x>0,y>0\) \[ x^2+y^2=r^2\\ y^2=(x+r)(x-r) \] 设\(r ...
- bzoj千题计划127:bzoj1041: [HAOI2008]圆上的整点
http://www.lydsy.com/JudgeOnline/problem.php?id=1041 设 X>0 ,Y>0 X^2 + Y^2 = R^2 X^2 = R^2-Y^2 ...
- BZOJ1041 [HAOI2008]圆上的整点 【数学】
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MB Submit: 4631 Solved: 2087 [Submit][S ...
- BZOJ 1041: [HAOI2008]圆上的整点
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3621 Solved: 1605[Submit][Sta ...
- bzoj 1041: [HAOI2008]圆上的整点 数学
1041: [HAOI2008]圆上的整点 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...
随机推荐
- ZR并查集专题
ZR并查集专题 并查集,作为一个基础算法,对于初学者来说,下面的代码是维护连通性的利器 return fa[x] == x ? x : fa[x] = getf(fa[x]); 所以,但是这对并查集的 ...
- dotnet 控制台读写 Sqlite 提示 no such table 找不到文件
在使用 dotnet 读写 Sqlite 可以通过 EF Core 的方法,但是在 EF Core 创建的数据库可能和读写的数据库不是相同的文件 在我运行代码的时候发现在通过迁移创建数据库,创建的文件 ...
- 【codeforces 750C】New Year and Rating
time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...
- 2018-2-13-win10-UWP-九幽数据分析
title author date CreateTime categories win10 UWP 九幽数据分析 lindexi 2018-2-13 17:23:3 +0800 2018-2-13 1 ...
- IdentityServer4 Clients
原文地址 Clients 的定义 Client是指那些从 identityserver获取 token的应用 通常需要为client定义下面通用的设置 唯一的client id secret, 如果需 ...
- JMeter录制登录测试
本节试图解释使用任何公开可用的网站记录登录测试的确切步骤,该网站提供具有登录凭据的可靠登录页面. 出于测试目的,我们将使用OrangeHRM在URL- http://opensource.demo.o ...
- mac如何查看已连接wifi的密码
可以通道mac自带的“钥匙串访问”功能查看.选择需要查询的wifi名称,右击选择“将密码拷贝到剪贴板”,输入管理员密码后,密码就拷贝好了. 找个地方粘贴即可看到密码
- Linux Centos7 环境基于Docker部署Zookeeper服务搭建实战
配置Zookeeper安装目录 在宿主机配置zookeeper安装目录:/docker/develop/zookeeper 并且在文件夹创建 data 和logs 目录: mkdir -p /dock ...
- 学习python库:elasticsearch-py
一.介绍 elasticsearch-py是一个官方提供的low-level的elasticsearch python客户端库.为什么说它是一个low-level的客户端库呢?因为它只是对elasti ...
- 【题解】NOIP2016 提高组 简要题解
[题解]NOIP2016 提高组 简要题解 玩具迷题(送分) 用异或实现 //@winlere #include<iostream> #include<cstdio> #inc ...