Description###

求一个给定的圆(x2+y2=r^2),在圆周上有多少个点的坐标是整数。

Input###

只有一个正整数n,n<=2000 000 000

Output###

整点个数

Sample Input###

4

Sample Output###

4


想法##

嗯哼,一道数学题。

开始推柿子。

首先我们只需求出满足 $ x^2 + y^2 = z^2 $ 的正整数对数即可,乘以4后再加4便为答案

\[x^2+y^2=z^2 \\
y^2=z^2-x^2=(z+x)(z-x) \\
设\quad d=gcd(z+x,z-x) \\
那么 \quad y^2=d^2 \frac{z+x}{d} \frac{z-x}{d} \\
这里面 \frac{z+x}{d} 与 \frac{z-x}{d} 互质,所以 \frac{z+x}{d} 和 \frac{z-x}{d} 都为完全平方数 \\
设 \frac{z+x}{d}为A, \frac{z-x}{d}为B \\
设A=a^2,B=b^2 \\
a^2+b^2=\frac{2z}{d} \\
故,我们可以枚举2z的每一个约数d,然后再枚举每一对满足a^2+b^2=\frac{2z}{d}的a和b \\
得到a,b后要带回去算出A,B,判断是否gcd(A,B)=1且A \neq B
\]


代码##

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cmath> using namespace std; typedef long long ll; ll n,m,ans=0;
ll gcd(ll a,ll b) { return b ? gcd(b,a%b) : a; } int main()
{
scanf("%d",&n);
m=sqrt(n*2);
for(ll d=1;d<=m;d++){
if((n*2)%d) continue;
for(ll a=1;a*a*2<=d;a++){
ll b=sqrt(d-a*a);
if(b*b!=d-a*a) continue;
ll A=a*a,B=b*b;
if(gcd(A,B)!=1 || A==0 || B==0 || A==B) continue;
ans+=4;
}
for(ll a=1;a*a*2<=n*2/d;a++){
ll b=sqrt(n*2/d-a*a);
if(b*b!=n*2/d-a*a) continue;
ll A=a*a,B=b*b;
if(gcd(A,B)!=1 || A==0 || B==0 || A==B) continue;
ans+=4;
}
}
printf("%lld\n",ans+4); return 0;
}

[bzoj1041] [洛谷P2508] [HAOI2008] 圆上的整点的更多相关文章

  1. 洛谷P2508 [HAOI2008]圆上的整点

    题目描述 求一个给定的圆$ (x^2+y^2=r^2) $,在圆周上有多少个点的坐标是整数. 输入格式 \(r\) 输出格式 整点个数 输入输出样例 输入 4 输出 4 说明/提示 \(n\le 20 ...

  2. 2021.12.06 P2508 [HAOI2008]圆上的整点(数论+ π )

    2021.12.06 P2508 [HAOI2008]圆上的整点(数论+ \(\pi\) ) https://www.luogu.com.cn/problem/P2508 题意: 求一个给定的圆 \( ...

  3. P2508 [HAOI2008]圆上的整点

    题目描述 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. 输入输出格式 输入格式: r 输出格式: 整点个数 输入输出样例 输入样例#1: 复制 4 输出样例#1: 复制 ...

  4. luogu P2508 [HAOI2008]圆上的整点

    传送门 推荐去bzoj看个视频了解一下 不要妄想视频直接告诉你题解 但是视频告诉了你后面要用的东西 首先我们要求的是\(x^2+y^2=n^2(x,y\in Z)\)的\((x,y)\)对数,可以转化 ...

  5. 【BZOJ1041】[HAOI2008]圆上的整点

    [BZOJ1041][HAOI2008]圆上的整点 题面 bzoj 洛谷 题解 不妨设\(x>0,y>0\) \[ x^2+y^2=r^2\\ y^2=(x+r)(x-r) \] 设\(r ...

  6. bzoj千题计划127:bzoj1041: [HAOI2008]圆上的整点

    http://www.lydsy.com/JudgeOnline/problem.php?id=1041 设 X>0 ,Y>0 X^2 + Y^2 = R^2 X^2 = R^2-Y^2 ...

  7. BZOJ1041 [HAOI2008]圆上的整点 【数学】

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 4631  Solved: 2087 [Submit][S ...

  8. BZOJ 1041: [HAOI2008]圆上的整点

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3621  Solved: 1605[Submit][Sta ...

  9. bzoj 1041: [HAOI2008]圆上的整点 数学

    1041: [HAOI2008]圆上的整点 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...

随机推荐

  1. H3C 链路聚合分类

  2. H3CFTP操作示例

  3. 使用cnpm i -S axios 遇到报错Install fail! Error: EISDIR: illegal operation on a directory, symlink..........的解决办法

    “今天本来想在cnpm 环境下安装axios,但是在安装axios的时候出现了一些问题.使用cnpm淘宝镜像库下载安装axios的时候报错 Install fail! Error: EISDIR: i ...

  4. 关于对height:100%的研究

    参考此链接: https://segmentfault.com/a/1190000012707337

  5. vue中的时间修饰符stop,self

    stop阻止自身以外的冒泡 self只会阻止自身冒泡

  6. C语言动态内存

    动态分配内存的概述 在数组一章中,介绍过数组的长度是预先定义好的,在整个程序中固定不变,但是在实际的编程中,往往会发生这种情况,即所需内存空间取决于实际输入的数据,而无法预先确定.为了解决上述问题,c ...

  7. linux_jdk,zookeeper,kafka安装

    若是在虚拟机安装最好先进行下面的安装 1.1修改各个虚拟机主机名 vi /etc/sysconfig/network 1.2修改主机名和IP的映射关系 vi /etc/hosts 1.3关闭防火墙 # ...

  8. Keras文本预处理

    学习了Keras文档里的文本预处理部分,参考网上代码写了个例子 import keras.preprocessing.text as T from keras.preprocessing.text i ...

  9. Java内存模型之有序性问题

    本博客系列是学习并发编程过程中的记录总结.由于文章比较多,写的时间也比较散,所以我整理了个目录贴(传送门),方便查阅. 并发编程系列博客传送门 前言 之前的文章中讲到,JMM是内存模型规范在Java语 ...

  10. MySQL中的CHAR和VARCHAR到底支持多长?

    最近在研究MySQL的数据类型,我们知道,选择合适的数据类型和数据长度对MySQL的性能影响是不可忽视的,小字段意味着可以MySQL可以读取更多的记录,从而加快查询速度. 网上该问题的答案有很多版本, ...