题目链接

  这写得还不错:http://www.cnblogs.com/zzqsblog/p/5457091.html

  引入基变量\(x_{i+n}\),将约束\(\sum_{i=1}^m a_{ij}x_j\leq b_i\)改写为$$x_{i+n}=b_i-\sum_{i=1}^m a_{ij}x_j$$。

  目标函数为\(\sum_{i=1}^n C_ix_i\)。当存在\(r,c\)满足\(C_c>0\),\(B_r>0\),\(a_{rc}>0\),对第\(r\)个限制中的\(x_c\)做代换,即$$x_c=B_r-\sum_{j!=c}a_{rj}x_j-x_{r+n}$$(\(x_c\)成为基变量,\(x_{r+n}\)成为非基变量),然后代入目标函数中,非基变量取0,就一定可以使目标函数增大。这一步通过\(Pivot(r,c)\)(转轴)实现,同时要把其它约束中的\(x_c\)替换掉。

  当所有\(B_r\geq 0\)时,所有非基变量取0可以得到一个基本解(零解),即一定存在解。若存在\(B_r<0\),在限制\(r\)中找一个\(a_{rc}<0\)的\(x_c\)做代换,就可以使\(B_r>0\)。

  当然前提是任意\(x_i>0,i\in [1,n+m]\)。

//0ms	520kb
#include <cmath>
#include <cstdio>
#include <cctype>
#include <algorithm>
#define gc() getchar()
#define eps 1e-8
const int N=25;
const double INF=1e9; int n,m,id[50];
double A[N][N],Ans[N]; inline int read()
{
int now=0,f=1;register char c=gc();
for(;!isdigit(c);c=='-'&&(f=-1),c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now*f;
}
void Pivot(int r,int c)//r:Basic varivle c:Nonbasic variable
{//交换基变量与非基变量
std::swap(id[r+n],id[c]);
double t=A[r][c]; A[r][c]=1;//
for(int i=0; i<=n; ++i) A[r][i]/=t;
for(int i=0; i<=m; ++i)//在其它等式中换掉基变量
if(fabs(A[i][c])>eps && i!=r)
{
t=A[i][c]; A[i][c]=0;//
for(int j=0; j<=n; ++j) A[i][j]-=t*A[r][j];
}
}
bool Init()
{
for(int r,c; ; )
{
r=c=0;
for(int i=1; i<=m; ++i)//B[r]<0
if(A[i][0]<-eps && (!r || rand()&1)) r=i;
if(!r) return 1;
for(int i=1; i<=n; ++i)//A[r][c]<0
if(A[r][i]<-eps && (!c || rand()&1)) c=i;
if(!c) return puts("Infeasible"),0;
Pivot(r,c);
}
}
bool Simplex()
{
for(int r,c; ; )
{
r=c=0;
for(int i=1; i<=n; ++i)//C[c]>0
if(A[0][i]>eps) {c=i; break;}
if(!c) return 1;
double mn=INF;//找一个系数为正且约束最紧的A[r][c]
for(int i=1; i<=m; ++i)
if(A[i][c]>eps && A[i][0]/A[i][c]<mn) r=i, mn=A[i][0]/A[i][c];
if(!r) return puts("Unbounded"),0;//无约束
Pivot(r,c);
}
} int main()//x[i+n]=B[i]-∑a[i][j]*x[j]
{
srand(20180724);
n=read(), m=read(); int type=read();
for(int i=1; i<=n; ++i) A[0][i]=read();//目标函数系数C[i]
for(int i=1; i<=m; ++i)
{
for(int j=1; j<=n; ++j) A[i][j]=read();
A[i][0]=read();//B[i]
}
for(int i=1; i<=n; ++i) id[i]=i;
if(Init() && Simplex())
{
printf("%.8lf\n",-A[0][0]);//代换的时候Bi系数是负的s
if(type)
{
for(int i=1; i<=m; ++i) Ans[id[i+n]]=A[i][0];//成为基变量的xi取值即为bi,非基变量上的xi取0.
for(int i=1; i<=n; ++i) printf("%.8lf ",Ans[i]);
}
} return 0;
}

UOJ.179.线性规划(单纯形)的更多相关文章

  1. UOJ#179. 线性规划[模板]

    传送门 http://uoj.ac/problem/179 震惊,博主竟然还不会线性规划! 单纯形实在学不会啊……背个板子当黑盒用…… 学(chao)了NanoApe dalao的板子 #includ ...

  2. UOJ#179. 线性规划(线性规划)

    描述 提交 自定义测试 这是一道模板题. (这个题现在标程挂了..哪位哥哥愿意提供一下靠谱的标程呀?) 本题中你需要求解一个标准型线性规划: 有 nn 个实数变量 x1,x2,…,xnx1,x2,…, ...

  3. uoj#179 线性规划

    这是一道模板题. 本题中你需要求解一个标准型线性规划: 有nn个实数变量x1,x2,⋯,xnx1,x2,⋯,xn和mm条约束,其中第ii条约束形如∑nj=1aijxj≤bi∑j=1naijxj≤bi. ...

  4. 【UOJ #179】线性规划 单纯形模板

    http://uoj.ac/problem/179 终于写出来了单纯性算法的板子,抄的网上大爷的qwq 辅助线性规划找非基变量时要加个随机化才能A,我也不知道为什么,卡精度吗? 2017-3-6UPD ...

  5. 【UOJ#179】线性规划 单纯形

    题目链接: http://uoj.ac/problem/179 Solution 就是单纯形模板题,这篇博客就是存一下板子. Code #include<iostream> #includ ...

  6. 【UOJ 179】 #179. 线性规划 (单纯形法)

    http://uoj.ac/problem/179 补充那一列修改方法: 对于第i行: $$xi=bi-\sum Aij*xj$$    $$=bi-\sum_{j!=e} Aij*xj-Aie*xe ...

  7. UVA 10498 Happiness(线性规划-单纯形)

    Description Prof. Kaykobad has given Nasa the duty of buying some food for the ACM contestents. Nasa ...

  8. Note -「线性规划」学习笔记

    \(\mathcal{Definition}\)   线性规划(Linear Programming, LP)形式上是对如下问题的描述: \[\operatorname{maximize}~~~~z= ...

  9. 线性规划VB求解

    线性规划VB求解 Rem 定义动态数组 Dim a() As Single, c() As Single, b() As Single, cb() As Single Dim aa() As Sing ...

随机推荐

  1. VMware Linux 下 Nginx 安装配置 - nginx.conf 配置 [负载两个 Tomcat] (三)

    首先启动Nginx 1. 相关浏览 两个 Tomcat 配置:  VMware Linux 下 Nginx 安装配置 - Tomcat 配置 (二) Nginx 安装配置启动: VMware Linu ...

  2. 20155328 2016-2017-2 《Java程序设计》第六周 学习总结

    20155328 2016-2017-2 <Java程序设计>第6周学习总结 教材学习内容总结 根据不同的分类标准,IO可分为:输入/输出流:字节/字符流:节点/处理流. 在不使用Inpu ...

  3. 20155206 2016-2017-2 《Java程序设计》第6周学习总结

    20155206 2016-2017-2 <Java程序设计>第6周学习总结 教材学习内容总结 串流设计 流(Stream)是对「输入输出」的抽象,注意「输入输出」是相对程序而言的. Ja ...

  4. ispoweroftwo 判断2的次幂【转】

    转自:https://www.cnblogs.com/troublelost/p/5236391.html 首先结果是: public bool IsPowerOfTwo(int n) { if(n& ...

  5. phantomhs获取网页的高度

    function heheda() { window.setTimeout(function () { console.log("---------------------Capture O ...

  6. Linux删除以减号开头的文件

    2014年5月5日 10:33:47 原因:文件乱码了,乱码后以减号开头,删不掉 摘抄: 文件系统出现一个文件 -C.html 如何删除/新建?rm -- "-C.html" to ...

  7. GPU下train 模型出现nan

    When training on GPU, the error "Model diverged with loss = NaN" is often caused by a sotm ...

  8. Windows caffe VGG人脸识别

    caffe自带的例子有mnist和cifar10,cifar10和mnist的运行方式类型,下好图片数据文件后,训练例子中的模型,然后测试模型,也可以自己用图片进行预测分类(自己图片最好是cifar1 ...

  9. css实现导航切换

    css实现导航切换 效果图: 代码如下,复制即可使用: <!DOCTYPE html> <html> <head> <title>css实现导航切换&l ...

  10. 深度剖析:PHP中json_encode与json_decode

    一.json_encode() 对变量进行JSON编码, 语法: json_encode ( $value [, $options = 0 ] ) 注意:1.$value为要编码的值,且该函数只对UT ...