这好像是个暴力?

但是跑的挺快的

我们设\(dp[i][j][k]\)表示在第\(i\)行我们最远染到的位置是\(j\),这一行上一共染了\(k\)次最多能染对多少个格子

理性分析一下啊,每一行最多也就染\(m\)次,这样就能把这一行格子全部都染对

所以这个空间复杂度是\(nm^2\)的

之后考虑一下转移

显然这就是一个非常经典的断点\(dp\)了,转移为

\[dp[i][j][k]=max(dp[i][p][k-1]+max(s_0[p+1,j],s_1[p+1,j]))
\]

\(s_0[p+1,j]\)表示这个区间内有几个\(0\),后面那个也就是我们能够正确覆盖的格子数量

最后用分组背包合并大案就好了

代码

#include<iostream>
#include<cstring>
#include<cstdio>
#define max(a,b) ((a)>(b)?(a):(b))
#define re register
int dp[51][51][51];
int pre[51][51][2];
char S[51][51];
int f[2501];
int n,m,T;
int main()
{
scanf("%d%d%d",&n,&m,&T);
for(re int i=1;i<=n;i++)
{
scanf("%s",S[i]+1);
for(re int j=1;j<=m;j++)
if(S[i][j]=='1') pre[i][j][1]=pre[i][j-1][1]+1,pre[i][j][0]=pre[i][j-1][0];
else pre[i][j][1]=pre[i][j-1][1],pre[i][j][0]=pre[i][j-1][0]+1;
}
for(re int i=1;i<=n;i++)
for(re int j=1;j<=m;j++)
for(re int k=1;k<=j;k++)
for(re int p=0;p<j;p++)
dp[i][j][k]=max(dp[i][j][k],dp[i][p][k-1]+max(pre[i][j][0]-pre[i][p][0],pre[i][j][1]-pre[i][p][1]));
for(re int i=1;i<=n;i++)
for(re int j=T;j>=0;j--)
for(re int k=0;k<=m;k++)
if(j-k>=0) f[j]=max(f[j],f[j-k]+dp[i][m][k]);
printf("%d\n",f[T]);
return 0;
}

【[SCOI2009]粉刷匠】的更多相关文章

  1. BZOJ 1296: [SCOI2009]粉刷匠 分组DP

    1296: [SCOI2009]粉刷匠 Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上 ...

  2. BZOJ 1296: [SCOI2009]粉刷匠( dp )

    dp[ i ][ j ] = max( dp[ i - 1 ][ k ] + w[ i ][ j - k ] )  ( 0 <= k <= j ) 表示前 i 行用了 j 次粉刷的机会能正 ...

  3. 【BZOJ1296】[SCOI2009]粉刷匠(动态规划)

    [BZOJ1296][SCOI2009]粉刷匠(动态规划) 题面 BZOJ 洛谷 题解 一眼题吧. 对于每个串做一次\(dp\),求出这个串刷若干次次能够达到的最大值,然后背包合并所有的结果即可. # ...

  4. 1296: [SCOI2009]粉刷匠[多重dp]

    1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1919  Solved: 1099[Submit][Statu ...

  5. 【BZOJ1296】[SCOI2009]粉刷匠 (DP+背包)

    [SCOI2009]粉刷匠 题目描述 \(windy\)有 \(N\) 条木板需要被粉刷. 每条木板被分为 \(M\) 个格子. 每个格子要被刷成红色或蓝色. \(windy\)每次粉刷,只能选择一条 ...

  6. 背包 DP【洛谷P4158】 [SCOI2009]粉刷匠

    P4158 [SCOI2009]粉刷匠 windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上 ...

  7. BZOJ_1296_[SCOI2009]粉刷匠_DP

    BZOJ_1296_[SCOI2009]粉刷匠_DP Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能 ...

  8. [Bzoj1296][Scoi2009] 粉刷匠 [DP + 分组背包]

    1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2184  Solved: 1259[Submit][Statu ...

  9. bzoj1296: [SCOI2009]粉刷匠(DP)

    1296: [SCOI2009]粉刷匠 题目:传送门 题解: DP新姿势:dp套dp 我们先单独处理每个串,然后再放到全局更新: f[i][k]表示当前串枚举到第i个位置,用了k次机会 F[i][j] ...

  10. Luogu P4158 [SCOI2009]粉刷匠(dp+背包)

    P4158 [SCOI2009]粉刷匠 题意 题目描述 \(windy\)有\(N\)条木板需要被粉刷.每条木板被分为\(M\)个格子. 每个格子要被刷成红色或蓝色. \(windy\)每次粉刷,只能 ...

随机推荐

  1. Tomcat疑难杂症解决记录

    1. startup.bat闪退 cmd中运行startup.bat报错: The JRE_HOME environment variable is not defined correctly Thi ...

  2. http和web缓存

    1.http的缓存类型   缓 存对于一个网站来说非常重要,可以提高网站性能,减少冗余的数据传输,增加服务器负担,web存储则给浏览器提供了更加强大的保存文件的接口.关于web下的http缓存类型比较 ...

  3. 【linux相识相知】sed命令

    在之前的博客中我们介绍了文本三剑客中grep,本次博客就另外一名剑客——sed做出详细的描述,sed真的是一款强大的工具.下面让我们来一起看一下吧! 概述和工作机制 SED的英文全称为Stream E ...

  4. bzoj 5303: [Haoi2018]反色游戏

    Description Solution 对于一个有偶数个黑点的连通块,只需要任意两两配对,并把配对点上的任一条路径取反,就可以变成全白了 如果存在奇数个黑点的连通块显然无解,判掉就可以了 如果有解, ...

  5. springboot和mybatis集成,自动生成model、mapper,增加mybatis分页功能

    整体思路和http://www.cnblogs.com/mahuan2/p/5859921.html相同. 主要讲maven的pom.xml和一些配置变化,详细说明. 软件简介 Spring是一个流行 ...

  6. C#中的MD5加密

    1 using System.Web.Security; 2  string pswd = FormsAuthentication.HashPasswordForStoringInConfigFile ...

  7. js之箭头函数

    原文 ES6标准新增了一种新的函数:Arrow Function(箭头函数). 为什么叫Arrow Function?因为它的定义用的就是一个箭头: x => x * x 上面的箭头函数相当于: ...

  8. 【Linux】安装配置Tomcat7

    第一步:下载Tomcat安装包 下载地址:https://tomcat.apache.org/download-70.cgi [root@localhost ~]# wget http://mirro ...

  9. 重构指南 - 使用多态代替条件判断(Replace conditional with Polymorphism)

    多态(polymorphism)是面向对象的重要特性,简单可理解为:一个接口,多种实现. 当你的代码中存在通过不同的类型执行不同的操作,包含大量if else或者switch语句时,就可以考虑进行重构 ...

  10. mysql四:数据操作

    一.介绍 MySQL数据操作: DML ======================================================== 在MySQL管理软件中,可以通过SQL语句中的 ...