bzoj

description

你有一个\(A\)串和\(B\)串,你需要判断是否可以在\(A\)串中拆出\(x\)个互不相交的子串,使它们按顺序拼在一起可以组成\(B\)串。

\(|A|,|B|\le10^5,x\le100\)

sol

设\(f_{i,j}\)表示已经使用了\(i\)个\(A\)的子串,\(A\)已经使用到了\(j\)位置时\(B\)串中的最长匹配的长度,每次转移的时候显然回取\(A\)串中的\(j+1\)位置和\(B\)串中的\(f_{i,j}+1\)位置的\(lcp\)进行转移,再做一个前缀\(\max\)就好了。

\(lcp\)用后缀数组做到\(O(n\log n)-O(1)\),复杂度\(O(T(n\log n+nx))\)

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int gi(){
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
const int N = 2e5+5;
int T,n,m,K,len,val[N],t[N],x[N],y[N],SA[N],Rank[N],Height[20][N],lg[N],f[2][N];
char a[N],b[N];
bool cmp(int i,int j,int k){return y[i]==y[j]&&y[i+k]==y[j+k];}
void getSA(){
int m=30;
for (int i=0;i<=m;++i) t[i]=0;
for (int i=1;i<=len;++i) ++t[x[i]=val[i]];
for (int i=1;i<=m;++i) t[i]+=t[i-1];
for (int i=len;i;--i) SA[t[x[i]]--]=i;
for (int k=1;k<=len;k<<=1){
int p=0;
for (int i=0;i<=m;++i) y[i]=0;
for (int i=len-k+1;i<=len;++i) y[++p]=i;
for (int i=1;i<=len;++i) if (SA[i]>k) y[++p]=SA[i]-k;
for (int i=0;i<=m;++i) t[i]=0;
for (int i=1;i<=len;++i) ++t[x[y[i]]];
for (int i=1;i<=m;++i) t[i]+=t[i-1];
for (int i=len;i;--i) SA[t[x[y[i]]]--]=y[i];
swap(x,y);x[SA[1]]=p=1;
for (int i=2;i<=len;++i) x[SA[i]]=cmp(SA[i],SA[i-1],k)?p:++p;
if (p>=len) break;m=p;
}
for (int i=1;i<=len;++i) Rank[SA[i]]=i;
for (int i=1,j=0;i<=len;++i){
if (j) --j;
while (val[i+j]==val[SA[Rank[i]-1]+j]) ++j;
Height[0][Rank[i]]=j;
}
for (int i=2;i<=len;++i) lg[i]=lg[i>>1]+1;
for (int j=1;j<=lg[len];++j)
for (int i=1;i+(1<<j)-1<=len;++i)
Height[j][i]=min(Height[j-1][i],Height[j-1][i+(1<<j-1)]);
}
int lcp(int i,int j){
i=Rank[i],j=Rank[j];if (i>j) swap(i,j);
++i;int k=lg[j-i+1];
return min(Height[k][i],Height[k][j-(1<<k)+1]);
}
int main(){
T=gi();while (T--){
n=gi();m=gi();K=gi();scanf("%s",a+1);scanf("%s",b+1);
memset(Rank,0,sizeof(Rank));
for (int i=1;i<=n;++i) val[i]=a[i]-'a'+1;
for (int i=1;i<=m;++i) val[n+1+i]=b[i]-'a'+1;
val[n+1]=27;val[n+1+m+1]=0;len=n+m+1;getSA();
memset(f[0],0,sizeof(f[0]));
for (int i=1;i<=K;++i){
int now=i&1,pre=now^1;
memset(f[now],0,sizeof(f[now]));
for (int j=0;j<n;++j){
int gg=lcp(j+1,n+1+f[pre][j]+1);
f[now][j+gg]=max(f[now][j+gg],f[pre][j]+gg);
}
for (int j=1;j<=n;++j) f[now][j]=max(f[now][j],f[now][j-1]);
}
puts(f[K&1][n]==m?"YES":"NO");
}
return 0;
}

[BZOJ5073][Lydsy1710月赛]小A的咒语的更多相关文章

  1. [BZOJ5073] [Lydsy1710月赛]小A的咒语 后缀数组+dp+贪心

    题目链接 首先这种题一看就是dp. 设\(dp[i][j]\)表示\(A\)序列中到\(i\)位之前,取了\(j\)段,在\(B\)中的最长的长度. 转移也比较简单 \[ dp[i][j] \to d ...

  2. 5073 [Lydsy1710月赛]小A的咒语

    LINK:[Lydsy1710月赛]小A的咒语 每次给定两个串 要求从a串中选出x段拼成B串 能否做到.T组数据. \(n\leq 100000,m\leq 100000,T\leq 10,x\leq ...

  3. 【bzoj5073】[Lydsy1710月赛]小A的咒语 后缀数组+倍增RMQ+贪心+dp

    题目描述 给出 $A$ 串和 $B$ 串,从 $A$ 串中选出至多 $x$ 个互不重合的段,使得它们按照原顺序拼接后能够得到 $B$ 串.求是否可行.多组数据. $T\le 10$ ,$|A|,|B| ...

  4. 【BZOJ5073】[Lydsy十月月赛]小A的咒语 DP(错解)

    [BZOJ5073][Lydsy十月月赛]小A的咒语 题解:沙茶DP,完全不用后缀数组. 用f[i][j]表示用了A的前i个字符,用了j段,最远能匹配到哪.因为显然我们能匹配到的地方越远越好,所以我们 ...

  5. [BZOJ 5072][Lydsy1710月赛]小A的树

    传送门 \(\color{green}{solution}\) 嗯...其实我也不太会,所以大胆猜个结论吧(后来证了一下,然后放弃了...). 我们发现如果要使一个联通块的黑点数量为\(k\)的方案最 ...

  6. BZOJ5072:[Lydsy1710月赛]小A的树(树形DP)

    Description BZOJ只是扔了个下载链接 Solution 设$f[x][i]$表示$x$点选中$i$个黑点的最小连通块. 设$g[x][i]$表示$x$点选中$i$个黑点的最大连通块. 转 ...

  7. [BZOJ 5074][Lydsy1710月赛]小B的数字

    传送门 \(\color{green}{solution}\) 设 \[b_{i}=2^{w_{i}},sum= \sum_{i=1}^{n}{w_{i}}\] 则对于任意\(a_{i}\)都有 \[ ...

  8. [Lydsy1710月赛] 小B的数字

    神TM 又又又又是构造题..... 很简单的化简就是,把2^k[i]都换成k[i] ,然后就可以得出 对于任意的i,k[i] * a[i] >= ∑k[]. 最优的构造肯定是使  k[i] = ...

  9. bzoj 5072 [Lydsy1710月赛]小A的树——树形dp

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5072 发现对于每个子树,黑点个数确定时,连通块的大小取值范围一定是一段区间:所以考虑只最小化 ...

随机推荐

  1. PHP stream相关协议及上下文选项和参数归纳

    支持的协议和封装协议 PHP 带有很多内置 URL 风格的封装协议,可用于类似 fopen(). copy(). file_exists() 和 filesize() 的文件系统函数. 除了这些封装协 ...

  2. matlab C++ (VS Qt)混合编程 / mxArray / QT5中文乱码

    一.混合编程环境搭建---依据我的情况,分成了4个部分: 1:破解matlab,因为matlab破解不完全,编译器不能使用,会出错.(参考https://blog.csdn.net/a12593012 ...

  3. Bootstrap 与 IE 兼容模式 关系讲解

    IE 兼容模式 Bootstrap 不支持 IE 古老的兼容模式.为了让 IE 浏览器运行最新的渲染模式下,建议将此 <meta> 标签加入到你的页面中:Copy <meta htt ...

  4. 8.初识Lock与AbstractQueuedSynchronizer(AQS)

    1. concurrent包的结构层次 在针对并发编程中,Doug Lea大师为我们提供了大量实用,高性能的工具类,针对这些代码进行研究会让我们对并发编程的掌握更加透彻也会大大提升我们队并发编程技术的 ...

  5. poj-2342-简单树形dp

    Anniversary party Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10388   Accepted: 594 ...

  6. B-Tree和B+Tree

    目前大部分数据库系统及文件系统都采用B-Tree或其变种B+Tree作为索引结构,在本文的下一节会结合存储器原理及计算机存取原理讨论为什么B-Tree和B+Tree在被如此广泛用于索引,这一节先单纯从 ...

  7. MySQL的登陆错误:ERROR 1049 (42000): Unknown database 'root'

    当初刚装MySQL的时候,到网上查的命令行登陆MySQL的方法都是mysql -u root -p password mysql -r root -p 123456 但是奇怪的是这条命令我输进去死活都 ...

  8. IOS UI-控制器的创建和控制器的View的创建

    一.控制器的创建和控制器的View的创建 说明:控制器有三种创建方式,下面一一进行说明. 一.第一种创建方式(使用代码直接创建) 1.创建一个空的IOS项目. 2.为项目添加一个控制器类. 3.直接在 ...

  9. C#学习历程(三)[基础概念]

    >>简单描述OOP 面向对象编程是由面向过程编程发展而来,不再注重于具体的步骤,而是更多的聚焦于对象. 以对象为载体,然后去完善对象的特点(属性),然后实现对象的具体的功能,同时处理对象与 ...

  10. 内存保护机制及绕过方法——通过伪造SEHOP链绕过SEHOP保护机制

    1.1    SEHOP保护机制 1.1.1    SEHOP工作原理: SEHOP保护机制的核心就是检查SEH链的完整性,其验证代码如下: BOOL RtlIsValidHandler(handle ...