BZOJ5125: [Lydsy1712月赛]小Q的书架(DP决策单调性)
题意:N个数,按顺序划分为K组,使得逆序对之和最小。
思路:之前能用四边形不等式写的,一般网上都还有DP单调性分治的做法,今天也尝试用后者写(抄)了一遍。即:
分成K组,我们进行K-1次分治,get(l,r,L,R)中如果mid位置的最优解来自MID,那么分别以mid和MID和分界线,有get(l,mid-1,L,MID);get(mid+1,r,MID,R);
区间逆序对没有什么特别高效的方法,我们用莫对跑ok了。
#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int maxn=;
int a[maxn],sum[maxn],dp[maxn],ans[maxn],N,K,ql,qr,cost;
inline int query(int x){int res=;while(x){ res+=sum[x]; x-=(-x)&x;} return res;}
inline void add(int x,int val){while(x<=N){ sum[x]+=val; x+=(-x)&x;} }
inline void move(int l,int r)
{
while(ql>l) cost+=query(a[--ql]-),add(a[ql],);
while(qr<r) cost+=query(N)-query(a[++qr]),add(a[qr],);
while(ql<l) add(a[ql],-),cost-=query(a[ql++]-);
while(qr>r) add(a[qr],-),cost-=query(N)-query(a[qr--]);
}
inline void get(int l,int r,int L,int R)
{
if(l>r) return ;
int mid=(l+r)>>,Mid;
for(int i=min(R+,mid);i>L;i--){
move(i,mid);
if(dp[i-]+cost<ans[mid]) {ans[mid]=dp[i-]+cost; Mid=i-;}
}
get(l,mid-,L,Mid); get(mid+,r,Mid,R);
}
int main()
{
scanf("%d%d",&N,&K);
rep(i,,N) scanf("%d",&a[i]);
rep(i,,N) ans[i]=ans[i-]+query(N)-query(a[i]),add(a[i],);
ql=; qr=N; cost=ans[N];
rep(i,,K){
memcpy(dp,ans,sizeof(ans)); //把上一轮的结果复制
memset(ans,0x3f,sizeof(ans));
get(,N,,N-);
}
printf("%d\n",ans[N]);
return ;
}
我也写了四边形不等式来优化DP,其他部分一样。 然而T了,估计是莫对跑得太多了。
#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int maxn=;
int a[maxn],sum[maxn],dp[maxn][],pos[maxn][],N,K,ql,qr,cost;
inline int query(int x){int res=;while(x){ res+=sum[x]; x-=(-x)&x;} return res;}
inline void add(int x,int val){while(x<=N){ sum[x]+=val; x+=(-x)&x;} }
inline void move(int l,int r)
{
while(ql>l) cost+=query(a[--ql]-),add(a[ql],);
while(qr<r) cost+=query(N)-query(a[++qr]),add(a[qr],);
while(ql<l) add(a[ql],-),cost-=query(a[ql++]-);
while(qr>r) add(a[qr],-),cost-=query(N)-query(a[qr--]);
}
int main()
{
scanf("%d%d",&N,&K);
rep(i,,N) scanf("%d",&a[i]);
memset(dp,0x3f,sizeof(dp)); dp[][]=;
rep(i,,N) dp[i][]=dp[i-][]+query(N)-query(a[i]),add(a[i],);
ql=; qr=N; cost=dp[N][];
rep(i,,K){
rep(j,,N){
int L=pos[j][i-]?pos[j][i-]:;
int R=pos[j+][i]?pos[j+][i]:N-;
rep(k,L,R) {
if(k>=j) continue;
move(k+,j);
if(dp[j][i]>dp[k][i-]+cost){
dp[j][i]=dp[k][i-]+cost;
pos[j][i]=k;
}
}
}
}
printf("%d\n",dp[N][K]);
return ;
}
BZOJ5125: [Lydsy1712月赛]小Q的书架(DP决策单调性)的更多相关文章
- BZOJ5125: [Lydsy1712月赛]小Q的书架【决策单调性优化DP】【BIT】【莫队】【分治】
小Q有n本书,每本书有一个独一无二的编号,现在它们正零乱地在地上排成了一排. 小Q希望把这一排书分成恰好k段,使得每段至少有一本书,然后把每段按照现在的顺序依次放到k层书架的每一层上去.将所有书都放到 ...
- bzoj 5125: [Lydsy1712月赛]小Q的书架
新学了一波 决策单调性 dp 套路.... 这种dp一般是长这样的 => f[i][j] = max/min { f[i-1][k] + cost(k+1,j)} ,其中cost函数满足四边形 ...
- BZOJ5125 小Q的书架(决策单调性+动态规划+分治+树状数组)
设f[i][j]为前i个划成j段的最小代价,枚举上个划分点转移.容易想到这个dp有决策单调性,感性证明一下比较显然.如果用单调栈维护决策就不太能快速的求出逆序对个数了,改为使用分治,移动端点时树状数组 ...
- [BZOJ5125]小Q的书架(决策单调性+分治DP+树状数组)
显然有决策单调性,但由于逆序对不容易计算,考虑分治DP. solve(k,x,y,l,r)表示当前需要选k段,待更新的位置为[l,r],这些位置的可能决策点区间为[x,y].暴力计算出(l+r)/2的 ...
- 【BZOJ 5125】小Q的书架
Problem Description 小 \(Q\) 有 \(n\) 本书,每本书有一个独一无二的编号,现在它们正零乱地在地上排成了一排. 小 \(Q\) 希望把这一排书分成恰好 \(k\) 段,使 ...
- 【BZOJ5073】[Lydsy十月月赛]小A的咒语 DP(错解)
[BZOJ5073][Lydsy十月月赛]小A的咒语 题解:沙茶DP,完全不用后缀数组. 用f[i][j]表示用了A的前i个字符,用了j段,最远能匹配到哪.因为显然我们能匹配到的地方越远越好,所以我们 ...
- [BZOJ4813][CQOI2017]小Q的棋盘(DP,贪心)
4813: [Cqoi2017]小Q的棋盘 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 804 Solved: 441[Submit][Statu ...
- [NOI2009]诗人小G --- DP + 决策单调性
[NOI2009]诗人小G 题目描述: 小G是一个出色的诗人,经常作诗自娱自乐. 但是,他一直被一件事情所困扰,那就是诗的排版问题. 一首诗包含了若干个句子,对于一些连续的短句,可以将它们用空格隔开并 ...
- [NOI2009]诗人小G(dp + 决策单调性优化)
题意 有一个长度为 \(n\) 的序列 \(A\) 和常数 \(L, P\) ,你需要将它分成若干段,每 \(P\) 一段的代价为 \(| \sum ( A_i ) − L|^P\) ,求最小代价的划 ...
随机推荐
- invocationCount和invocationTimeOut
这篇我们来学习下@Test中另外两个属性invocationCount和invocationTimeOut,前面我介绍了timOut这个属性,知道是超时监控的功能.同样,本篇两个属性和这个差不多,只不 ...
- 一些putty的应用设置
把windows下putty的key转换成linux上使用的rsa key http://ask.apelearn.com/question/937 putty生成的密钥导入connectbot ...
- redis——redis主从复制
和MySQL主从复制的原因一样,Redis虽然读取写入的速度都特别快,但是也会产生读压力特别大的情况.为了分担读压力,Redis支持主从复制,Redis的主从结构可以采用一主多从或者级联结构,Redi ...
- (转)SQL Server中的索引结构与疑惑
说实话我从没有在实际项目中使用过索引,仅知道索引是一个相当重要的技术点,因此我也看了不少文章知道了索引的区别.分类.优缺点以及如何使用索引.但关于索引它最本质的是什么笔者一直没明白,本文是笔者带着这些 ...
- 自已开发完美的触摸屏网页版仿app弹窗型滚动列表选择器/日期选择器
手机端网页版app在使用下拉列表时,传统的下拉列表使用起来体验非常不好,一般做的稍好一点的交互功能界面都不会直接使用下拉列表,所以app的原生下拉列表都是弹窗列表选择,网页型app从使用体验上来当然也 ...
- 十三 web爬虫讲解2—Scrapy框架爬虫—Scrapy爬取百度新闻,爬取Ajax动态生成的信息
crapy爬取百度新闻,爬取Ajax动态生成的信息,抓取百度新闻首页的新闻rul地址 有多网站,当你浏览器访问时看到的信息,在html源文件里却找不到,由得信息还是滚动条滚动到对应的位置后才显示信息, ...
- lambda表达式 <二>
概念了解: 1.什么是匿名委托(匿名方法的简单介绍.为什么要用匿名方法) 2.匿名方法的[拉姆达表达式]方法定义 3.匿名方法的调用(匿名方法的参数传递.使用过程中需要注意什么) 什么是匿名方法? 匿 ...
- 单例类singleton自动释放
body, table{font-family: 微软雅黑; font-size: 10pt} table{border-collapse: collapse; border: solid gray; ...
- 嵌套类,PIMPL
body, table{font-family: 微软雅黑; font-size: 10pt} table{border-collapse: collapse; border: solid gray; ...
- linux系统参数统计脚本
#!/bin/sh clear if [[ $# -eq 0 ]] then #Define Variable Reset_terminal Reset_terminal=$(tput sgr0) # ...