Spark RDD概念学习系列之RDD的5大特点(五)
RDD的5大特点
1)有一个分片列表,就是能被切分,和Hadoop一样,能够切分的数据才能并行计算。
一组分片(partition),即数据集的基本组成单位,对于RDD来说,每个分片都会被一个计算任务处理,并决定并行计算的粒度。用户可以在创建RDD时指定RDD的分片个数,如果没有指定,那么就会采用默认值。默认值就是程序所分配到的CPU Core的数目。每个分配的存储是由BlockManager实现的,每个分区都会被逻辑映射成BlockManager的一个Block,而这个Block会被一个Task负责计算。
2)由一个函数计算每一个分片,这里指的是下面会提到的compute函数。
Spark中的RDD的计算是以分片为单位的,每个RDD都会实现compute函数以达到这个目的。compute函数会对迭代器进行复合,不需要保存每次计算的结果。
3)对其他RDD的依赖列表,依赖还具体分为宽依赖和窄依赖,但并不是所有的RDD都有依赖。
RDD的每次转换都会生成一个新的RDD,所以RDD之间就会形成类似于流水线一样的前后依赖关系。在部分分区数据丢失时,Spark可以通过这个依赖关系重新计算丢失的分区数据,而不是对RDD的所有分区进行重新计算。
4)可选:key-value型的RDD是根据哈希来分区的,类似于mapreduce当中的paritioner接口,控制Key分到哪个reduce。
一个partitioner,即RDD的分片函数。当前Spark中实现了两种类型的分片函数,一个是基于哈希的HashPartitioner,另外一个基于范围的RangePartitioner。只有对于key-value的RDD,才会有Partitioner,非key-value的RDD的Partitioner的值是None。Partitioner函数不但决定了RDD本身的分片数量,也决定了parent RDD Shuffle输出时的分片数量。
5)可选:每一分片的优先计算位置,比如HDFS的block的所在位置应该是优先计算的位置。
一个列表,存储存取每个Partition的优先位置(preferred location)。对于一个HDFS文件来说,这个列表保存的就是每个Partition所在的块的位置。按照“移动数据不如移动计算”的理念,Spark在进行任务调度的时候,会尽可能地将计算任务分配到其所要处理数据块的存储位置。
- 它是在集群节点上的不可变的、已分区的集合对象。
- 通过并行转换的方式来创建如(map, filter, join, etc)。
- 失败自动重建。
- 可以控制存储级别(内存、磁盘等)来进行重用。
- 必须是可序列化的。
- 是静态类型的。
进一步,说:
worker里有很多Excutor,真正完成计算的是Excutor,Excutor计算都是在内存进行计算,
Excutor里面有partitioner,partitioner里面的数据如果内存足够大的话放到内存中,它是一点一点读的。
RDD是分布式数据集,所说RDD就是这个。
RDD有5个特点:
1.a list of partiotioner有很多个partiotioner(这里有3个partiotioner),可以明确的说,一个分区在一台机器上,一个分区其实就是放在一台机器的内存上,一台机器上可以有多个分区。
2.a function for partiotioner一个函数作用在一个分区上。比如说一个分区有1,2,3 在rdd1.map(_*10),把RDD里面的每一个元素取出来乘以10,每个分片都应用这个map的函数。
3.RDD之间有一系列的依赖rdd1.map(_*10).flatMap(..).map(..).reduceByKey(...),构建成为DAG,这个DAG会构造成很多个阶段,这些阶段叫做stage,RDDstage之间会有依赖关系,后面根据前面的依赖关系来构建,如果前面的数据丢了,它会记住前面的依赖,从前面进行重新恢复。每一个算子都会产生新的RDD。textFile 与flatMap会产生两个RDD.
4.分区器hash & Integer.Max % partiotioner 决定数据到哪个分区里面,可选,这个RDD是key-value 的时候才能有
5.最佳位置。数据在哪台机器上,任务就启在哪个机器上,数据在本地上,不用走网络。不过数据进行最后汇总的时候就要走网络。(hdfs file的block块)
RDD有5个特点:
1、RDD是Spark提供的核心抽象,全称为Resillient Distributed Dataset,即弹性分布式数据集。
2、RDD在抽象上来说是一种元素集合,包含了数据。它是被分区的,分为多个分区,每个分区分布在集群中的不同节点上,从而让RDD中的数据可以被并行操作。(分布式数据集)
3、RDD通常通过Hadoop上的文件,即HDFS文件或者Hive表,来进行创建;有时也可以通过应用程序中的集合来创建。
4、RDD最重要的特性就是,提供了容错性,可以自动从节点失败中恢复过来。即如果某个节点上的RDD partition,因为节点故障,导致数据丢了,那么RDD会自动通过自己的数据来源重新计算该partition。这一切对使用者是透明的。
5、RDD的数据默认情况下存放在内存中的,但是在内存资源不足时,Spark会自动将RDD数据写入磁盘。(弹性)
推荐,阅读源码来进一步学习。可见,知识来自于源码
* Internally, each RDD is characterized by five main properties:** - A list of partitions* - A function for computing each split* - A list of dependencies on other RDDs* - Optionally, a Partitioner for key-value RDDs (e.g. to say that the RDD is hash-partitioned)* - Optionally, a list of preferred locations to compute each split on (e.g. block locations for* an HDFS file)
Spark RDD概念学习系列之RDD的5大特点(五)的更多相关文章
- Spark RDD概念学习系列之RDD的转换(十)
RDD的转换 Spark会根据用户提交的计算逻辑中的RDD的转换和动作来生成RDD之间的依赖关系,同时这个计算链也就生成了逻辑上的DAG.接下来以“Word Count”为例,详细描述这个DAG生成的 ...
- Spark RDD概念学习系列之RDD的checkpoint(九)
RDD的检查点 首先,要清楚.为什么spark要引入检查点机制?引入RDD的检查点? 答:如果缓存丢失了,则需要重新计算.如果计算特别复杂或者计算耗时特别多,那么缓存丢失对于整个Job的影响是不容 ...
- Spark RDD概念学习系列之RDD的缓存(八)
RDD的缓存 RDD的缓存和RDD的checkpoint的区别 缓存是在计算结束后,直接将计算结果通过用户定义的存储级别(存储级别定义了缓存存储的介质,现在支持内存.本地文件系统和Tachyon) ...
- Spark RDD概念学习系列之RDD的操作(七)
RDD的操作 RDD支持两种操作:转换和动作. 1)转换,即从现有的数据集创建一个新的数据集. 2)动作,即在数据集上进行计算后,返回一个值给Driver程序. 例如,map就是一种转换,它将数据集每 ...
- Spark RDD概念学习系列之RDD是什么?(四)
RDD是什么? 通俗地理解,RDD可以被抽象地理解为一个大的数组(Array),但是这个数组是分布在集群上的.详细见 Spark的数据存储 Spark的核心数据模型是RDD,但RDD是个抽象类 ...
- Spark RDD概念学习系列之RDD的依赖关系(宽依赖和窄依赖)(三)
RDD的依赖关系? RDD和它依赖的parent RDD(s)的关系有两种不同的类型,即窄依赖(narrow dependency)和宽依赖(wide dependency). 1)窄依赖指的是每 ...
- Spark RDD概念学习系列之RDD的缺点(二)
RDD的缺点? RDD是Spark最基本也是最根本的数据抽象,它具备像MapReduce等数据流模型的容错性,并且允许开发人员在大型集群上执行基于内存的计算. 为了有效地实现容错,(详细见ht ...
- Spark RDD概念学习系列之rdd持久化、广播、累加器(十八)
1.rdd持久化 2.广播 3.累加器 1.rdd持久化 通过spark-shell,可以快速的验证我们的想法和操作! 启动hdfs集群 spark@SparkSingleNode:/usr/loca ...
- Spark RDD概念学习系列之rdd的依赖关系彻底解密(十九)
本期内容: 1.RDD依赖关系的本质内幕 2.依赖关系下的数据流视图 3.经典的RDD依赖关系解析 4.RDD依赖关系源码内幕 1.RDD依赖关系的本质内幕 由于RDD是粗粒度的操作数据集,每个Tra ...
- Spark RDD概念学习系列之RDD的创建(六)
RDD的创建 两种方式来创建RDD: 1)由一个已经存在的Scala集合创建 2)由外部存储系统的数据集创建,包括本地文件系统,还有所有Hadoop支持的数据集,比如HDFS.Cassandra.H ...
随机推荐
- 《OD大数据实战》MongoDB环境搭建
一.MongonDB环境搭建 1. 下载 https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-3.0.6.tgz 2. 解压 tar -zxvf ...
- 函数lock_rec_create
/*********************************************************************//** Creates a new record lock ...
- jQuery_添加与删除元素
一.jQuery添加元素(通过 jQuery,可以很容易地添加新元素/内容.) 1.添加新的 HTML 内容,用于添加新内容的四个 jQuery 方法(都能解析HTML标签): append() - ...
- 漫游kafka实战篇之搭建Kafka开发环境
上篇文章中我们搭建了kafka的服务器,并可以使用Kafka的命令行工具创建topic,发送和接收消息.下面我们来搭建kafka的开发环境. 添加依赖 搭建开发环境需要引入kafka的jar包 ...
- UVa 673 Parentheses Balance【栈】
题意:输入一个包含"()"和"[]"的序列,判断是否合法 用栈来模拟,遇到"(",“[”就入栈,遇到')',']'就取出栈顶元素看是否匹配, ...
- (六)6.14 Neurons Networks Restricted Boltzmann Machines
1.RBM简介 受限玻尔兹曼机(Restricted Boltzmann Machines,RBM)最早由hinton提出,是一种无监督学习方法,即对于给定数据,找到最大程度拟合这组数据的参数.RBM ...
- UVa572 - Oil Deposits
解题思路:好久没写搜索了,练练手,陶冶情操.不多说,直接贴代码: #include<cstdio> #include<cstring> #include<algorith ...
- 备忘录 - numpy基本方法总结
一.数组方法 创建数组:arange()创建一维数组:array()创建一维或多维数组,其参数是类似于数组的对象,如列表等 反过来转换则可以使用numpy.ndarray.tolist()函数,如a. ...
- 10g中HASH GROUP BY引起的临时表空间不足
原本在9i上可以顺利完成的CTAS脚本,迁移到10g后运行总是报“ORA-1652: unable to extend temp segment by 128 in tablespace TS_HQY ...
- mate代码详解
1.用以说明生成工具(如MICROSOFT FRONTPAGE 4.0)等: 2.向搜索引擎说明你的网页的关键词: 3.告诉搜索引擎你的站点的主要内容: 4.告诉搜索引擎你的站点的制作的作者: 5. ...