[HDU1812] Count the Tetris - polya定理
题面
Problem Description
话说就是因为这个游戏,Lele已经变成一个名人,每当他一出现在公共场合,就有无数人找他签名,挑战。
为了防止引起社会的骚动,Lele决定还是乖乖呆在家里。
在家很无聊,Lele可不想像其他人一样每天没事在家数钱玩,于是他就开始数棋盘。他想知道,一个有N×N个格子的正方形棋盘,每个格子可以用C种不同颜色来染色,一共可以得到多少种不同的棋盘。如果一个棋盘,经过任意旋转,反射后变成另一个棋盘,这两个棋盘就是属于同一种棋盘。
比如当N=C=2的时候,有下面六种不同的棋盘
现在告诉你N和C,请你帮帮Lele算算,到底有多少种不同的棋盘
Input
本题目包含多组测试,请处理到文件结束。
每组测试数据包含两个正整数N和C(0<N,C,<31),分别表示棋盘的大小是N×N,用C种颜色来进行染色。
Output
对于每组测试,在一行里输出答案。
Sample Input
2 2 3 1
Sample Output
6 1
题解
根据polya定理,
这道题的G中一共有8个元素,分别是①不动,②顺时针转90°,③转180°,④顺时针转270°,⑤左-右翻转,⑥上-下翻转,⑦左上-右下翻转,⑧左下-右上翻转。
C(i)就是每个元素的循环节个数,对于这道题可得:
实际的答案有可能达到N^2C级别,但是我们惊讶地发现这道题不取模,所以要用高精度
这道题很毒瘤,因为他的数据组数很大很大,每次直接算要超时,数据组数比31*31大得多,但是只有31*31种状态,所以我们记忆一下。
CODE
#include<cstdio>
#include<cstring>
#include<vector>
#include<stack>
#include<queue>
#include<algorithm>
#include<map>
#include<cmath>
#include<iostream>
#define MAXN 100005
#define LL long long
#define ULL unsigned LL
#define rg register
#define lowbit(x) (-(x) & (x))
#define ENDL putchar('\n')
//#pragma GCC optimize(2)
#define DB double
//#pragma G++ optimize(3)
#define int LL
using namespace std;
inline int read() {
int f = 1,x = 0;char s = getchar();
while(s < '0' || s > '9') {if(s == '-') f = -1;s = getchar();}
while(s >= '0' && s <= '9') {x = x * 10 - '0' + s;s = getchar();}
return x * f;
}
struct it{
int len;
LL s[3005];
it(){len = 1;memset(s,0,sizeof(s));}
it(int nm) {
len = 1;memset(s,0,sizeof(s));
for(int i = 1;nm;i ++) {
s[i] = nm % 1000000000;
nm /= 1000000000;
if(s[i]) len = max(len,i);
}
}
void print() {
printf("%d",s[len]);
for(int i = len-1;i > 0;i --) {
printf("%09d",s[i]);
}
}
};
it operator + (it a,it b) {
it c; LL m = 0;
for(int i = 1;i <= a.len || i <= b.len || m;i ++) {
c.s[i] = a.s[i] + b.s[i] + m;
m = c.s[i] / 1000000000;
c.s[i] %= 1000000000;
if(c.s[i]) c.len = max(c.len,i);
}
return c;
}
it operator * (it a,it b) {
it c; LL m = 0;
for(int i = 1;i <= a.len;i ++) {
m = 0;
for(int j = 1;j <= b.len || m;j ++) {
c.s[i + j - 1] += a.s[i] * b.s[j] + m;
m = c.s[i+j-1] / 1000000000;
c.s[i+j-1] %= 1000000000;
if(c.s[i+j-1]) c.len = max(c.len,i+j-1);
}
}
return c;
}
it operator / (it a,int b) {
it c; LL m = 0;
for(int i = a.len;i > 0;i --) {
m = m * 1000000000 + a.s[i];
c.s[i] = m / b;
m %= b;
if(c.s[i]) c.len = max(c.len,i);
}
return c;
}
int zxy;
LL n,m,i,j,s,o,k,ans;
LL gcd(LL a,LL b) {
return b == 0 ? a : gcd(b,a % b);
}
LL qkpow(LL a,LL b) {
LL res = 1;
while(b) {
if(b & 1) res = res * a;
b >>= 1; a = a * a;
}
return res;
}
it qkpow(it a,LL b) {
it res(1);
while(b) {
if(b & 1) res = res * a;
b >>= 1; a = a * a;
}
return res;
}
it dp[35][35];
bool vis[35][35];
signed main() {
while(scanf("%d%d",&n,&m) == 2) {
if(vis[n][m]) {
dp[n][m].print();
ENDL;
continue;
}
it ans;
it M(m);
ans = (qkpow(M,n * n));
ans = ans + (qkpow(M,(n & 1) ? ((n * n - 1) / 4 + 1) : (n * n / 4)) * it(2));
ans = ans + (qkpow(M,(n & 1) ? ((n * n - 1) / 2 + 1) : (n * n / 2)));
ans = ans + (qkpow(M,(n & 1) ? (n * (n+1) / 2) : (n * n / 2)) * it(2));
ans = ans + (qkpow(M,n * (n+1) / 2) * it(2));
ans = ans / 8;
ans.print();
dp[n][m] = ans;
vis[n][m] = 1;
ENDL;
}
return 0;
}
[HDU1812] Count the Tetris - polya定理的更多相关文章
- 【转】Polya定理
转自:http://endlesscount.blog.163.com/blog/static/82119787201221324524202/ Polya定理 首先记Sn为有前n个正整数组成的集合, ...
- 【群论】polya定理
对Polya定理的个人认识 我们先来看一道经典题目: He's Circles(SGU 294) 有一个长度为N的环,上面写着“X”和“E”,问本质不同的环有多少个(不 ...
- [wikioi2926][AHOI2002]黑白瓷砖(Polya定理)
小可可在课余的时候受美术老师的委派从事一项漆绘瓷砖的任务.首先把n(n+1)/2块正六边形瓷砖拼成三角形的形状,右图给出了n=3时拼成的“瓷砖三角形”.然后把每一块瓷砖漆成纯白色或者纯黑色,而且每块瓷 ...
- HDU 3923 Invoker(polya定理+逆元)
Invoker Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 122768/62768 K (Java/Others)Total Su ...
- Polya定理
http://www.cnblogs.com/wenruo/p/5304698.html 先看 Polya定理,Burnside引理回忆一下基础知识.总结的很棒. 一个置换就是集合到自身的一个双射,置 ...
- POJ 2409 Let it Bead(Polya定理)
点我看题目 题意 :给你c种颜色的n个珠子,问你可以组成多少种形式. 思路 :polya定理的应用,与1286差不多一样,代码一改就可以交....POJ 1286题解 #include <std ...
- POJ 1286 Necklace of Beads(Polya定理)
点我看题目 题意 :给你3个颜色的n个珠子,能组成多少不同形式的项链. 思路 :这个题分类就是polya定理,这个定理看起来真的是很麻烦啊T_T.......看了有个人写的不错: Polya定理: ( ...
- 百练_2409 Let it Bead(Polya定理)
描述 "Let it Bead" company is located upstairs at 700 Cannery Row in Monterey, CA. As you ca ...
- polya定理小结
polya的精髓就在与对循环节的寻找,其中常遇到的问题就是项链染色类问题. 当项链旋转时有n种置换,循环节的个数分别是gcd(n, i); 当项链翻转时有n种置换,其中当项链珠子数位奇数时,循环节的个 ...
随机推荐
- alertmanager集群莫名发送resolve消息的问题探究
alertmanager集群莫名发送resolve消息的问题探究 术语 告警消息:指一条告警 告警恢复消息:指一条告警恢复 告警信息:指告警相关的内容,包括告警消息和告警恢复消息 问题描述 最近遇到了 ...
- go-zero微服务实战系列(五、缓存代码怎么写)
缓存是高并发服务的基础,毫不夸张的说没有缓存高并发服务就无从谈起.本项目缓存使用Redis,Redis是目前主流的缓存数据库,支持丰富的数据类型,其中集合类型的底层主要依赖:整数数组.双向链表.哈希表 ...
- 重学ES系列之模版字符串
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- SAP Smartforms 参数配置
DATA : sf_name TYPE rs38l_fnam. DATA : sf_output_options TYPE ssfcompop. DATA : sf_control_parameter ...
- rhel7修改网卡名
备份eno16777736网卡配置,并复制出一个ifcfg-eth0 [root@rhel7 network-scripts]# cp ifcfg-eno16777736 ifcfg-eno16777 ...
- 如何在.Net Framework应用中请求HTTP2站点
背景介绍 本文的需求背景是对接苹果公司的推送服务(APNS),苹果在安全方面比较积极,已经严格限制API只支持HTTP2.但是我这里的应用目前仍然是.NET Framework平台,所以必须寻找一种解 ...
- 基于Vue3SSR渲染作品H5页
回顾 多项目之间的关系 业务组件sqxy-components为何要单独抽离出来? 整体思路 根据 id uuid来获取思路 判断 status(未发布,强制下线) 作品数据+leogo-cpmpon ...
- 地址解析协议(ARP) 分析
什么是ARP协议 ARP(A ddress R esolution P rotocol)- 地址解析协议 ,用于将IP地址解析为MAC地址.复杂来说,ARP用于32位IPv4地址和以太网的48位MAC ...
- day03_2_流程控制
# 流程控制 学习目标: ~~~txt1. idea安装与使用2. 流程控制if...else结构3. 流程控制switch结构4. 流程控制循环结构5. 流程控制关键字~~~ # 一.流程控制概述 ...
- 2022-7-19 第五组 pan小堂 封装和 this
this关键字 this关键字由来和使用: A:this:代表所在类的对象引用方法被哪个对象调用,this就代表那个对象 B:什么时候使用this呢 ? 局部变量和成员变量重名 set 和 get 方 ...