背景与原理:

线性回归可以实现对连续结果的预测,但是现实生活中我们常见的另一种问题是分类问题,尤其是二分类问题,在这种情况下使用线性回归就不太合适了,我们实际上需要计算出的是一个在$[0,1]$之间的概率来告诉我们某样本属于某一类的概率,因此逻辑回归应运而生。

一般的逻辑回归就是在线性回归的基础上嵌套一个逻辑函数,把线性回归的结果转换成概率。

即我们定义$h_{\theta}(X)=P(y=1|X,\theta),1-h_{\theta}(X)=P(y=0|X,\theta)$,那么我们希望最大化预测正确的概率,即我们要最大化:

$\prod_{i=1}^{m}P(y=y_{i}|X_{i},\theta)$

那么也就是:

$\prod_{i=1}^{m}(h_{\theta}(X_{i})^{y_{i}}(1-h_{\theta}(X_{i}))^{1-y_{i}}$

这不好计算,两侧取对数再去取相反数就得到:

$J(\theta)=-\dfrac{1}{m}\sum_{i=1}^{m}y_{i}\log h_{\theta}(X_{i})+(1-y_{i})\log (1-h_{\theta}(X_{i}))$

这样我们只需最小化这个损失函数就可以了,仍然使用梯度下降法确定参数,我们有:

$\hat{\theta_{j}}=\theta_{j}-\alpha \dfrac{\partial J(\theta)}{\partial \theta_{j}}$

对上式求偏导,最后我们得到:

$\hat{\theta_{j}}=\theta_{j}-\alpha \dfrac{1}{m}\sum_{i=1}^{m}(h_{\theta}(X_{i})-y_{i})x_{ij}$

而我们的操作是在线性模型的基础上套上一个逻辑模型,也即我们的参数仍然是线性模型的参数$\theta$:

$z=\theta^{T}X$

在这个基础上套上一个逻辑函数,这里我们选择的是sigmoid函数,即:

$g(z)=\dfrac{1}{1+e^{-z}}$

于是我们最后的函数即为:

$h_{\theta}=\dfrac{1}{1+e^{-\theta^{T}X}}$

代码实现:

import numpy as np
import math
from scipy import stats
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression def sigmoid(z):
return 1/(1+math.exp(-z)) def logical_regression(X,Y,theta,siz,alpha,eps):
delt=1 while delt>eps:
new_theta=np.zeros(3)
for i in range(0,3):
r=theta[i]
for j in range(0,siz):
d=alpha/siz*(sigmoid(theta[0]*X[0][j]+theta[1]*X[1][j]+theta[2]*X[2][j])-Y[j])*X[i][j]
r-=d
new_theta[i]=r
print(new_theta[i])
delta=new_theta-theta
delt=delta[0]**2+delta[1]**2+delta[2]**2
theta=new_theta
return theta x=np.arange(0.,10.,0.02)
y=5-2*x/3+np.random.randn(500)
now=0
dataset=[]
for i in range(0,500):
typ = 0
if 2*x[i]+3*y[i] <= 15:
if abs(np.random.randn(1)[0])<2:
typ = 1
else:
typ = 0
else:
if abs(np.random.randn(1)[0]) < 2:
typ = 0
else:
typ = 1 dataset.append([x[i],y[i],typ]) X=(np.array(dataset)[:,0:2]).T
x0=np.ones(500)
X=np.vstack([x0,X])
Y=(np.array(dataset)[:,2])
theta=np.array([1,1,1]) my_theta=logical_regression(X,Y,theta,500,1e-2,1e-7) print(my_theta) for i in range(0,500):
if Y[i]==1:
plt.scatter(X[1,i],X[2,i],c='r')
else:
plt.scatter(X[1,i],X[2,i],c='b')
plt.plot(x,-my_theta[1]/my_theta[2]*x-my_theta[0]/my_theta[2],c='g',linewidth=3)
plt.show()

这个代码生成了一组以直线$2x+3y-15=0$为分界的数据,并且加入了一定的随机化,最后通过逻辑回归能够找出这条直线,当然这里的参数选取同样也很重要

小结与优化:

逻辑回归中在一定程度上存在欠拟合的问题,因为很多时候分界线并不是直线而是曲线,此时单纯的线性函数已经无法拟合边界了,一个解决方案是引入更多维度,比如把$[x_{1},x_{2}]$扩展成$[x_{1},x_{2},x_{1}^{2},x_{2}^{2}]$,这样就可以更好拟合二次曲线形成的边界,以此类推等。

而精度问题则可能是由于数据特征有缺失或数据空间太大等,遇到这种情况可以加入正则化的一项使模型缩减系数,有利于提高模型的泛化能力。

python机器学习——逻辑回归方法的更多相关文章

  1. 吴裕雄 python 机器学习——逻辑回归

    import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...

  2. python机器学习-逻辑回归

    1.逻辑函数 假设数据集有n个独立的特征,x1到xn为样本的n个特征.常规的回归算法的目标是拟合出一个多项式函数,使得预测值与真实值的误差最小: 而我们希望这样的f(x)能够具有很好的逻辑判断性质,最 ...

  3. python机器学习——逻辑回归

    我们知道感知器算法对于不能完全线性分割的数据是无能为力的,在这一篇将会介绍另一种非常有效的二分类模型--逻辑回归.在分类任务中,它被广泛使用 逻辑回归是一个分类模型,在实现之前我们先介绍几个概念: 几 ...

  4. 机器学习_线性回归和逻辑回归_案例实战:Python实现逻辑回归与梯度下降策略_项目实战:使用逻辑回归判断信用卡欺诈检测

    线性回归: 注:为偏置项,这一项的x的值假设为[1,1,1,1,1....] 注:为使似然函数越大,则需要最小二乘法函数越小越好 线性回归中为什么选用平方和作为误差函数?假设模型结果与测量值 误差满足 ...

  5. 机器学习---逻辑回归(二)(Machine Learning Logistic Regression II)

    在<机器学习---逻辑回归(一)(Machine Learning Logistic Regression I)>一文中,我们讨论了如何用逻辑回归解决二分类问题以及逻辑回归算法的本质.现在 ...

  6. 机器学习/逻辑回归(logistic regression)/--附python代码

    个人分类: 机器学习 本文为吴恩达<机器学习>课程的读书笔记,并用python实现. 前一篇讲了线性回归,这一篇讲逻辑回归,有了上一篇的基础,这一篇的内容会显得比较简单. 逻辑回归(log ...

  7. 机器学习之使用Python完成逻辑回归

    一.任务基础 我们将建立一个逻辑回归模型来预测一个学生是否被大学录取.假设你是一个大学系的管理员,你想根据两次考试的结果来决定每个申请人的录取机会.你有以前的申请人的历史数据,你可以用它作为逻辑回归的 ...

  8. 机器学习——逻辑回归(Logistic Regression)

    1 前言 虽然该机器学习算法名字里面有"回归",但是它其实是个分类算法.取名逻辑回归主要是因为是从线性回归转变而来的. logistic回归,又叫对数几率回归. 2 回归模型 2. ...

  9. python机器学习《回归 一》

    唠嗑唠嗑 依旧是每一次随便讲两句生活小事.表示最近有点懒,可能是快要考试的原因,外加这两天都有笔试和各种面试,让心情变得没那么安静的敲代码,没那么安静的学习算法.搞得第一次和技术总监聊天的时候都不太懂 ...

  10. 机器学习---逻辑回归(一)(Machine Learning Logistic Regression I)

    逻辑回归(Logistic Regression)是一种经典的线性分类算法.逻辑回归虽然叫回归,但是其模型是用来分类的. 让我们先从最简单的二分类问题开始.给定特征向量x=([x1,x2,...,xn ...

随机推荐

  1. 如何在eclipse里的动态Web项目建立后缀为xml的文件

    1.右击Dynamic Web Project类型项目的WEB-INF->new->Other->XML,选择XML File2 点击next改名字为web(后缀不要动哦)3. 点击 ...

  2. WPF美化常用(渐变)

    1,线性渐变色设置 2,径向渐变色设置(圆形)

  3. docker 搭建 nginxconfig.io 文档

    docker镜像仓库 https://hub.docker.com/r/devopstestlab/nginxconfig.io 获取镜像 docekr pull devopstestlab/ngin ...

  4. (1028) 权限,chmod、chgrp、chown详解

    https://www.cnblogs.com/Berryxiong/p/6193866.html 例1: $ chgrp - R book /opt/local /book 改变/opt/local ...

  5. wsl2 的安装与使用

    wsl2 简介 wsl2 是 window 自家做的虚拟机,如果初次接触,可以建立的理解为 vmware.只不过他是 window 公司自己开发的,所以从兼容性上来讲,会更好一些. 我个人选择使用 w ...

  6. debian11 配置samba服务 linuxsys

    一.安装软件包 sudo apt -y install samba samba-common 二.linux系统添加samba需要用的账户,创建需要共享的文件夹,并配置好权限.(注意共享文件夹最好不要 ...

  7. raise EOFError("Compressed file ended before the " EOFError: Compressed file ended before the end-of-stream marker was reached

    参考: EOFError: Compressed file ended before the end-of-stream marker was reached解决办法(在Windows下查看已下载的M ...

  8. jmeter--json格式的请求数据参数化以及断言

    环境背景:登录接口测试 第一步:创建登录接口的http请求 第二步:添加配置原件--CSV Data Set Config(配置如图所示) 第三步:接口的请求下添加响应断言(如:用响应状态码作为检查点 ...

  9. NVIDIA的GPU算力Compute Capalibity

    可查看官方查询地址:https://developer.nvidia.com/cuda-gpus

  10. win10 蓝屏代码 IRQL NOT LESS OR EQUAL 问题排查(ing)

    环境:Win10故障症状: 不定期蓝屏,重启 蓝屏代码: IRQL NOT LESS OR EQUAL 官方建议 尝试方法1:更新win10最新的补丁 [无效] 尝试方法2:重新安装显卡驱动(当前系统 ...