题目


分析(\(logk\)次Dijkstra)

首先为什么\(O(nklogn)\)的多次\(dijkstra\)为什么会TLE,

因为中间有许多的冗余状态,即使两点求出的路径是最短的,它也不一定是最优的,

怎样转换成单源最短路径问题,考虑建超级源点和超级汇点,要使两两之间的最短路径都能被统计,

那么考虑二进制拆分,将某一位的0或者1分成两部分跑最短路,这样保证关键点两两间最短路径不会遗漏

时间复杂度是\(O(nlognlogk)\)


代码

#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define rr register
using namespace std;
const int N=100011; typedef long long lll;
struct node{int y,w,next;}e[N*6];
pair<lll,int>heap[N]; lll ans,dis[N];
int as[N],n,m,K,kk,k,cnt,p[N],As[N];
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline void Push(pair<lll,int>w){
heap[++cnt]=w;
rr int x=cnt;
while (x>1){
if (heap[x>>1]>heap[x])
swap(heap[x>>1],heap[x]),x>>=1;
else return;
}
}
inline void Pop(){
heap[1]=heap[cnt--];
rr int x=1;
while ((x<<1)<=cnt){
rr int y=x<<1;
if (y<cnt&&heap[y+1]<heap[y]) ++y;
if (heap[y]<heap[x]) swap(heap[y],heap[x]),x=y;
else return;
}
} inline lll Dijkstra(){
for (rr int i=1;i<n+3;++i) dis[i]=1e18;
dis[n+1]=0,heap[++cnt]=make_pair(0,n+1);
while (cnt){
rr int x=heap[1].second; rr lll t=heap[1].first;
Pop(); if (t!=dis[x]) continue;
for (rr int i=as[x];i;i=e[i].next)
if (dis[e[i].y]>dis[x]+e[i].w){
dis[e[i].y]=dis[x]+e[i].w;
Push(make_pair(dis[e[i].y],e[i].y));
}
}
return dis[n+2];
}
signed main(){
for (rr int T=iut();T;--T){
memset(as,0,sizeof(as)),ans=1e18;
n=iut(),m=iut(),K=iut(),k=1;
for (rr int i=1;i<=m;++i){
rr int x=iut(),y=iut(),w=iut();
e[++k]=(node){y,w,as[x]},as[x]=k;
}
for (rr int i=1;i<=K;++i) p[i]=iut();
memcpy(As,as,sizeof(as)),kk=k;
for (rr int i=0;(1<<i)<=K;++i){
memcpy(as,As,sizeof(As)),k=kk;
for (rr int j=1;j<=K;++j)
if ((j>>i)&1) e[++k]=(node){p[j],0,as[n+1]},as[n+1]=k;
else e[++k]=(node){n+2,0,as[p[j]]},as[p[j]]=k;
ans=min(ans,Dijkstra());
memcpy(as,As,sizeof(As)),k=kk;
for (rr int j=1;j<=K;++j)
if ((j>>i)&1) e[++k]=(node){n+2,0,as[p[j]]},as[p[j]]=k;
else e[++k]=(node){p[j],0,as[n+1]},as[n+1]=k;
ans=min(ans,Dijkstra());
}
printf("%lld\n",ans);
}
return 0;
}

分析(2次最短路)

虽然上述方法很常用,但是很容易被卡掉,

考虑枚举点或者边,使得两个关键点的最短路经过这个点或者这条边,

一个很常见的技巧就是标记最短路是由哪个关键点到的,

如果正反最短路的关键点不同,说明存在一条经过该点或该边的最短路

但是正确性不会证qwq


代码

#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define rr register
using namespace std;
const int N=100011; typedef long long lll;
struct node{int y,w,next;}e[N*10];
pair<lll,int>heap[N]; lll ans,dis[2][N];
int as[2][N],n,m,K,k,cnt,p[N],f[2][N];
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline void Push(pair<lll,int>w){
heap[++cnt]=w;
rr int x=cnt;
while (x>1){
if (heap[x>>1]>heap[x])
swap(heap[x>>1],heap[x]),x>>=1;
else return;
}
}
inline void Pop(){
heap[1]=heap[cnt--];
rr int x=1;
while ((x<<1)<=cnt){
rr int y=x<<1;
if (y<cnt&&heap[y+1]<heap[y]) ++y;
if (heap[y]<heap[x]) swap(heap[y],heap[x]),x=y;
else return;
}
}
inline void Dijkstra(int z){
for (rr int i=1;i<=n;++i) dis[z][i]=1e18,f[z][i]=-1;
for (rr int i=1;i<=K;++i) f[z][p[i]]=p[i];
for (rr int i=1;i<=K;++i) Push(make_pair(dis[z][p[i]]=0,p[i]));
while (cnt){
rr int x=heap[1].second; rr lll t=heap[1].first;
Pop(); if (t!=dis[z][x]) continue;
for (rr int i=as[z][x];i;i=e[i].next)
if (dis[z][e[i].y]>dis[z][x]+e[i].w){
dis[z][e[i].y]=dis[z][x]+e[i].w,f[z][e[i].y]=f[z][x];
Push(make_pair(dis[z][e[i].y],e[i].y));
}
}
}
signed main(){
for (rr int T=iut();T;--T){
memset(as,0,sizeof(as)),ans=1e18;
n=iut(),m=iut(),K=iut(),k=1;
for (rr int i=1;i<=m;++i){
rr int x=iut(),y=iut(),w=iut();
e[++k]=(node){y,w,as[0][x]},as[0][x]=k;
e[++k]=(node){x,w,as[1][y]},as[1][y]=k;
}
for (rr int i=1;i<=K;++i) p[i]=iut();
Dijkstra(0),Dijkstra(1);
for (rr int i=1;i<=n;++i)
if (f[0][i]^f[1][i])
ans=min(ans,dis[0][i]+dis[1][i]);
for (rr int i=2;i<=k;i+=2)
if (f[0][e[i^1].y]^f[1][e[i].y])
ans=min(ans,dis[0][e[i^1].y]+e[i].w+dis[1][e[i].y]);
printf("%lld\n",ans);
}
return 0;
}

#Dijkstra,二进制拆位#洛谷 5304 [GXOI/GZOI2019]旅行者的更多相关文章

  1. 洛谷 P5304 [GXOI/GZOI2019]旅行者(最短路)

    洛谷:传送门 bzoj:传送门 参考资料: [1]:https://xht37.blog.luogu.org/p5304-gxoigzoi2019-lv-xing-zhe [2]:http://www ...

  2. [洛谷P5304][GXOI/GZOI2019]旅行者

    题目大意: 有一张 \(n(n\leqslant10^5)\) 个点 \(m(m\leqslant5\times10^5)\) 条边的有向有正权图,有$k(2\leqslant k\leqslant ...

  3. 洛谷.5300.[GXOI/GZOI2019]与或和(单调栈)

    LOJ BZOJ 洛谷 想了一个奇葩的单调栈,算的时候要在中间取\(\min\),感觉不靠谱不写了=-= 调了十分钟发现输出没取模=v= BZOJ好逗逼啊 题面连pdf都不挂了 哈哈哈哈 枚举每一位. ...

  4. [LOJ3087][GXOI/GZOI2019]旅行者——堆优化dijkstra

    题目链接: [GXOI/GZOI2019]旅行者 我们考虑每条边的贡献,对每个点求出能到达它的最近的感兴趣的城市(设为$f[i]$,最短距离设为$a[i]$)和它能到达的离它最近的感兴趣的城市(设为$ ...

  5. P5304 [GXOI/GZOI2019]旅行者

    题目地址:P5304 [GXOI/GZOI2019]旅行者 这里是官方题解 一个图 \(n\) 点 \(m\) 条边,里面有 \(k\) 个特殊点,问这 \(k\) 个点之间两两最短路的最小值是多少? ...

  6. 【BZOJ5506】[GXOI/GZOI2019]旅行者(最短路)

    [BZOJ5506][GXOI/GZOI2019]旅行者(最短路) 题面 BZOJ 洛谷 题解 正着做一遍\(dij\)求出最短路径以及从谁转移过来的,反过来做一遍,如果两个点不由同一个点转移过来就更 ...

  7. 二进制拆位(贪心)【p2114】[NOI2014]起床困难综合症

    Description 21世纪,许多人得了一种奇怪的病:起床困难综合症,其临床表现为:起床难,起床后精神不佳.作为一名青春阳光好少年,atm一直坚持与起床困难综合症作斗争.通过研究相关文献,他找到了 ...

  8. BZOJ4888 [Tjoi2017]异或和 FFT或树状数组+二进制拆位

    题面 戳这里 简要题解 做法一 因为所有数的和才100w,所以我们可以直接求出所有区间和. 直接把前缀和存到一个权值数组,再倒着存一遍,大力卷积一波. 这样做在bzoj目前还过不了,但是luogu开O ...

  9. 4.26 ABC F I hate Matrix Construction 二进制拆位 构造 最大匹配

    LINK:I hate Matrix Construction 心情如题目名称. 主要说明一下构造的正确性. 准确来说这道题困扰我很久. 容易发现可以拆位构造. 这样题目中的条件也比较容易使用. 最后 ...

  10. 【Dijkstra堆优化】洛谷P2243电路维修

    题目背景 Elf 是来自Gliese 星球的少女,由于偶然的原因漂流到了地球上.在她无依无靠的时候,善良的运输队员Mark 和James 收留了她.Elf 很感谢Mark和James,可是一直也没能给 ...

随机推荐

  1. Windows如何快速修改hosts文件

    作为开发人员,修改hosts文件可能是一个经常会执行的操作(使用自定义域名映射),但是如果每次都需要在Windows资源管理中进入到目录:C:\Windows\System32\drivers\etc ...

  2. 非常好用的VS Code插件

    Auto-Collapse Explorer 如果希望在VS Code编辑器中打开文件的时候自动展开对应的目录结构,需要开启"Auto Reveal". 具体设置步骤: 1.打开设 ...

  3. 安装SQL Server 具有不支持的属性(Compressed)集。

    安装sqlserver 2014报错信息 D:\Program Files\Microsoft SQL Server 具有不支持的属性(Compressed)集.请通过使用文件夹属性对话框从该文件夹中 ...

  4. 2024-03-02:用go语言,一个句子是由一些单词与它们之间的单个空格组成, 且句子的开头和结尾没有多余空格, 比方说,“Hello World“ ,“HELLO“ ,“hello world h

    2024-03-02:用go语言,一个句子是由一些单词与它们之间的单个空格组成, 且句子的开头和结尾没有多余空格, 比方说,"Hello World" ,"HELLO&q ...

  5. CSRF(Steam的链接不用随便点)

    漏洞详解 CSRF 漏洞原理: 攻击者会冒充或利用用户本人对web服务器发送请求,然而web服务器无法识别该请求是否为用户本人所发送,因此造成各种危害. 漏洞利用过程: 1)首先需要用户登录了上网站, ...

  6. Java //9*9乘法表 乘法口诀

    1 //9*9乘法表 2 3 for(int i =1;i<10;i++) 4 { 5 for(int j = 1;j <=i;j++) 6 { 7 System.out.print(i+ ...

  7. 安卓插耳机也外放扬声器播放音频的java代码

    最近遇到一个如何在耳机插入的情况下任然用扬声器播放音频的问题. 用搜索引擎找了一些网上的demo(案例) .发现按照他们的方法成功实现. 插入耳机的时候也可以选择使用扬声器播放音乐,来电铃声就是这么用 ...

  8. map 简单梳理【GO 基础】

    〇.map 简介 map 是一种无序的基于 key-value 的数据结构,Go 语言中的 map 是引用类型,必须初始化才能使用. 其中键可以是任何类型,但值必须是可比较的类型(如整数.字符串.布尔 ...

  9. linux 服务器 执行命令挂起 nohup 改用 pm2

    nohup http-server -p 80 & nohup完要 exit 退出,不能直接关! nohup完要 exit 退出,不能直接关! nohup完要 exit 退出,不能直接关! 重 ...

  10. 计算引擎-Presto

    概述 参考 高质量: B站:https://mp.weixin.qq.com/s/9_lSIFSw5o8sFC8foEtA7w https://mp.weixin.qq.com/s/NmTaJjE0U ...