[洛谷P5368] [PKUSC2018] 真实排名
[PKUSC2018]真实排名
题目描述
小 C 是某知名比赛的组织者,该比赛一共有 \(n\) 名选手参加,每个选手的成绩是一个非负整数,定义一个选手的排名是:成绩不小于他的选手的数量(包括他自己)。例如如果 \(3\) 位选手的成绩分别是 \([1 , 2 ,2]\) ,那么他们的排名分别是 \([3,2,2]\) 。
拥有上帝视角的你知道所有选手的实力,所以在考试前就精准地估计了每个人的成绩,设你估计的第 \(i\) 个选手的成绩为\(A_i\),且由于你是上帝视角,所以如果不发生任何意外的话,你估计的成绩就是选手的最终成绩。
但是在比赛当天发生了不可抗的事故(例如遭受到了外星人的攻击),导致有一些选手的成绩变成了最终成绩的两倍,即便是有上帝视角的你也不知道具体是哪些选手的成绩翻倍了,唯一知道的信息是这样的选手恰好有 \(k\) 个。
现在你需要计算,经过了不可抗事故后,对于第 \(i\) 位选手,有多少种情况满足他的排名没有改变。
由于答案可能过大,所以你只需要输出答案对 \(998244353\) 取模的值即可。
输入格式
第一行两个正整数 \(n,k\)
第二行 \(n\) 个非负整数 \(A_1..A_n\)
输出格式
输出 \(n\) 行,第 \(i\) 行一个非负整数 \(ans_i\),表示经过不可抗事故后,第 \(i\) 位选手的排名没有发生改变的情况数。
样例 #1
样例输入 #1
3 2
1 2 3
样例输出 #1
3
1
2
提示
对于 \(10\%\) 的数据,有 \(1\leq n\leq 15\)
对于 \(35\%\) 的数据,有 \(1\leq n\leq 10^3\)
另有 \(10\%\) 的数据,满足每个人的成绩都互不相同
另有 \(10\%\) 的数据,满足 \(0\leq A_i\leq 10^5\)
另有 \(10\%\) 的数据,满足 \(k=85\),\(0\leq A_i\leq 600\)
对于\(100\%\)的数据,有\(1\leq k < n\leq 10^5\),\(0\leq A_i\leq 10^9\)
考虑把所有 \(a\) 排序后处理。
\(a\) 数组中,如果第 \(i\) 个数不乘2,那么大于等于 \(a_i\) 的数随便乘,小于 \(a_i\) 的,要满足 \(2a_j<a_i\) 的 \(a_j\) 才可以给 \(a_j\) 乘2.
如果第 \(i\) 个数乘了 2,那么 所有满足 \(a_i\le a_j,2a_i>a_j\) 的数都要乘个 2,其余随便。
用双指针维护即可。
小细节:
- 注意双指针时 while 里面两个都不去等。
- 注意处理组合数时不要把 \(k\) 减出界。
- 注意 \(2\times 0=0\),所以要特判 \(a_i=0\)
#include<bits/stdc++.h>
using namespace std;
const int N=1e5+5,P=998244353;
int n,k,a[N],f[N],id[N],inv[N],ans[N],iv[N],l,r;
int cmp(int x,int y)
{
return a[x]<a[y];
}
int calc(int x,int y)
{
// if(x==1&&y==0)
// printf("%d %d %d\n",f[x],iv[y],iv[x-y]);
return 1LL*f[x]*iv[y]%P*iv[x-y]%P;
}
int main()
{
iv[0]=inv[1]=iv[1]=f[0]=f[1]=1;
scanf("%d%d",&n,&k);
for(int i=2;i<=n;i++)
{
f[i]=1LL*f[i-1]*i%P;
inv[i]=1LL*(P-P/i)*inv[P%i]%P;
iv[i]=1LL*iv[i-1]*inv[i]%P;
}
// printf("%d\n",calc(2,2));
for(int i=1;i<=n;i++)
scanf("%d",a+i),id[i]=i;
sort(id+1,id+n+1,cmp);
sort(a+1,a+n+1);
for(int i=1;i<=n;i++)
{
r=max(r,i);
if(i^1&&a[i]==a[i-1])
{
ans[id[i]]=ans[id[i-1]];
continue;
}
// printf("%d %d\n",l,r);
while(a[l+1]*2<a[i])
++l;
ans[id[i]]=calc(l+n-i,k);
while(r^n&&a[i]*2>a[r+1])
++r;
// printf("%d %d\n",i-1+n-r,k-r+i-1);
if(r-i+1<=k)
(ans[id[i]]+=calc(i-1+n-r,k-r+i-1))%=P;
// printf("%d %d\n",l,r);
}
for(int i=1;i<=n;i++)
printf("%d\n",ans[i]);
}
[洛谷P5368] [PKUSC2018] 真实排名的更多相关文章
- Luogu P5368 [PKUSC2018]真实排名
老年选手只会做SB题了(还调了好久) 很容易想到分类讨论,按第\(i\)个人有没有翻倍来算 若\(a_i\)未翻倍,显然此时将\([0,\lceil \frac{a_i}{2}\rceil)\)的数和 ...
- 「Luogu P5368 [PKUSC2018]真实排名」
PKUSC签到题 题目大意 给出一个长度为 \(N\) 的序列,序列中有 \(K\) 个数会乘二,对于每个数计算在乘二后大于等于这个数的个数与乘二前没有发生变化的方案数. 分析 思路很清晰,可以将答案 ...
- 【LOJ4632】[PKUSC2018]真实排名
[LOJ4632][PKUSC2018]真实排名 题面 终于有题面啦!!! 题目描述 小 C 是某知名比赛的组织者,该比赛一共有 \(n\) 名选手参加,每个选手的成绩是一个非负整数,定义一个选手的排 ...
- [PKUSC2018]真实排名
[PKUSC2018]真实排名 题目大意: 有\(n(n\le10^5)\)个人,每个人有一个成绩\(A_i(0\le A_i\le10^9)\).定义一个人的排名为\(n\)个人中成绩不小于他的总人 ...
- BZOJ_5368_[Pkusc2018]真实排名_组合数
BZOJ_5368_[Pkusc2018]真实排名_组合数 Description 小C是某知名比赛的组织者,该比赛一共有n名选手参加,每个选手的成绩是一个非负整数,定义一个选手的排名是:成绩不小于他 ...
- [PKUSC2018]真实排名——线段树+组合数
题目链接: [PKUSC2018]真实排名 对于每个数$val$分两种情况讨论: 1.当$val$不翻倍时,那么可以翻倍的是权值比$\frac{val-1}{2}$小的和大于等于$val$的. 2.当 ...
- 【洛谷 P4291】 [HAOI2008]排名系统(Splay,Trie)
题目链接 不是双倍经验我会去\(debug\)一上午? 一开始我是用的\(map+string\),跑的太慢了,T了4个点. 后来我手写了\(string\),重载了小于号,依然用的\(map\),T ...
- 【洛谷5368】[PKUSC2018] 真实排名(组合数学)
点此看题面 大致题意: 有\(n\)个数字,定义一个数的排名为不小于它的数的个数.现要随机将其中\(k\)个数乘\(2\),求对于每个数有多少种方案使其排名不变. 分类讨论 对于这种题目,我们可以分类 ...
- BZOJ5368:[PKUSC2018]真实排名(组合数学)
Description 小C是某知名比赛的组织者,该比赛一共有n名选手参加,每个选手的成绩是一个非负整数,定义一个选手的排名是:成绩不小于他的选手的数量(包括他自己). 例如如果333位选手的成绩分别 ...
- bzoj 5368: [Pkusc2018]真实排名
Description 小C是某知名比赛的组织者,该比赛一共有n名选手参加,每个选手的成绩是一个非负整数,定义一个选手的排名是 :成绩不小于他的选手的数量(包括他自己).例如如果3位选手的成绩分别是[ ...
随机推荐
- C# QRCode二维码的解析与生成
已知一张二维码图片,怎么生成一张一模一样的图片出来? 最近有个项目,需要用到QRCode,之前只做过Datamatrix格式的,想着应该也是差不多的,于是就依葫芦画瓢,掏出我的陈年OnBarcode类 ...
- 《Kali渗透基础》11. 无线渗透(一)
@ 目录 1:无线技术 2:IEEE 802.11 标准 2.1:无线网络分层 2.2:IEEE 2.3:日常使用标准 2.3.1:802.11 2.3.2:802.11b 2.3.3:802.11a ...
- API接口获取的商品详情该如何使用
获取到商品API接口返回的商品详情数据后,我们可以将其用于以下方面: 商品展示:通过获取到的商品详情数据,我们可以展示商品信息,包括商品名称.价格.商品图片.描述等信息.我们可以将这些信息显示在商品详 ...
- Windows安装、配置、卸载MySQL教程
MySQL是一个关系型数据库管理系统,目前为Oracle旗下产品,它具有开源.体积小.速度快的优点,许多网站使用的都是MySQL数据库. 简单而言,MySQL数据库核心功能就是用来存储数据的. MyS ...
- MD5&MD5盐值加密到BCryptPasswordEncoder
MD5&MD5盐值加密 Message Digest algorithm5,信息摘要算法: 压缩性:任意长度的数据,算出的MD5值长度都是固定的 容易计算:从原数据计算出MD5值很容易 抗修改 ...
- 【.NET8】访问私有成员新姿势UnsafeAccessor(上)
前言 前几天在.NET性能优化群里面,有群友聊到了.NET8新增的一个特性,这个类叫UnsafeAccessor,有很多群友都不知道这个特性是干嘛的,所以我就想写一篇文章来带大家了解一下这个特性. 其 ...
- jdk8环境变量
JAVA_HOME C:\Program Files\Java\jdk1.8.0_333 Path%JAVA_HOME%\bin%JAVA_HOME%\jre\bin CLASSPATH.%JAVA_ ...
- MySQL运维1-日志
一.错误日志 错误日志是MySQL中最重要的日志之一,它记录了当MySQL启动和停止时,以及服务器在运行过程中发生的任何严重错误时的相关信息,当数据库出现任何故障导致无法正常使用时,建议首先查看此日志 ...
- 五分钟k8s入门到实战-应用配置
背景 在前面三节中已经讲到如何将我们的应用部署到 k8s 集群并提供对外访问的能力,x现在可以满足基本的应用开发需求了. 现在我们需要更进一步,使用 k8s 提供的一些其他对象来标准化我的应用开发. ...
- IntelliJ IDEA安装中文插件
1.运行IntelliJ IDEA程序2.点击左上角"File"//文件3.点击下拉的"Settings" //设置4.点击"Plugins" ...