[PKUSC2018]真实排名

题目描述

小 C 是某知名比赛的组织者,该比赛一共有 \(n\) 名选手参加,每个选手的成绩是一个非负整数,定义一个选手的排名是:成绩不小于他的选手的数量(包括他自己)。例如如果 \(3\) 位选手的成绩分别是 \([1 , 2 ,2]\) ,那么他们的排名分别是 \([3,2,2]\) 。

拥有上帝视角的你知道所有选手的实力,所以在考试前就精准地估计了每个人的成绩,设你估计的第 \(i\) 个选手的成绩为\(A_i\),且由于你是上帝视角,所以如果不发生任何意外的话,你估计的成绩就是选手的最终成绩。

但是在比赛当天发生了不可抗的事故(例如遭受到了外星人的攻击),导致有一些选手的成绩变成了最终成绩的两倍,即便是有上帝视角的你也不知道具体是哪些选手的成绩翻倍了,唯一知道的信息是这样的选手恰好有 \(k\) 个。

现在你需要计算,经过了不可抗事故后,对于第 \(i\) 位选手,有多少种情况满足他的排名没有改变。

由于答案可能过大,所以你只需要输出答案对 \(998244353\) 取模的值即可。

输入格式

第一行两个正整数 \(n,k\)

第二行 \(n\) 个非负整数 \(A_1..A_n\)

输出格式

输出 \(n\) 行,第 \(i\) 行一个非负整数 \(ans_i\),表示经过不可抗事故后,第 \(i\) 位选手的排名没有发生改变的情况数。

样例 #1

样例输入 #1

3 2
1 2 3

样例输出 #1

3
1
2

提示

对于 \(10\%\) 的数据,有 \(1\leq n\leq 15\)

对于 \(35\%\) 的数据,有 \(1\leq n\leq 10^3\)

另有 \(10\%\) 的数据,满足每个人的成绩都互不相同

另有 \(10\%\) 的数据,满足 \(0\leq A_i\leq 10^5\)

另有 \(10\%\) 的数据,满足 \(k=85\),\(0\leq A_i\leq 600\)

对于\(100\%\)的数据,有\(1\leq k < n\leq 10^5\),\(0\leq A_i\leq 10^9\)

考虑把所有 \(a\) 排序后处理。

\(a\) 数组中,如果第 \(i\) 个数不乘2,那么大于等于 \(a_i\) 的数随便乘,小于 \(a_i\) 的,要满足 \(2a_j<a_i\) 的 \(a_j\) 才可以给 \(a_j\) 乘2.

如果第 \(i\) 个数乘了 2,那么 所有满足 \(a_i\le a_j,2a_i>a_j\) 的数都要乘个 2,其余随便。

用双指针维护即可。

小细节:

  1. 注意双指针时 while 里面两个都不去等。
  2. 注意处理组合数时不要把 \(k\) 减出界。
  3. 注意 \(2\times 0=0\),所以要特判 \(a_i=0\)
#include<bits/stdc++.h>
using namespace std;
const int N=1e5+5,P=998244353;
int n,k,a[N],f[N],id[N],inv[N],ans[N],iv[N],l,r;
int cmp(int x,int y)
{
return a[x]<a[y];
}
int calc(int x,int y)
{
// if(x==1&&y==0)
// printf("%d %d %d\n",f[x],iv[y],iv[x-y]);
return 1LL*f[x]*iv[y]%P*iv[x-y]%P;
}
int main()
{
iv[0]=inv[1]=iv[1]=f[0]=f[1]=1;
scanf("%d%d",&n,&k);
for(int i=2;i<=n;i++)
{
f[i]=1LL*f[i-1]*i%P;
inv[i]=1LL*(P-P/i)*inv[P%i]%P;
iv[i]=1LL*iv[i-1]*inv[i]%P;
}
// printf("%d\n",calc(2,2));
for(int i=1;i<=n;i++)
scanf("%d",a+i),id[i]=i;
sort(id+1,id+n+1,cmp);
sort(a+1,a+n+1);
for(int i=1;i<=n;i++)
{
r=max(r,i);
if(i^1&&a[i]==a[i-1])
{
ans[id[i]]=ans[id[i-1]];
continue;
}
// printf("%d %d\n",l,r);
while(a[l+1]*2<a[i])
++l;
ans[id[i]]=calc(l+n-i,k);
while(r^n&&a[i]*2>a[r+1])
++r;
// printf("%d %d\n",i-1+n-r,k-r+i-1);
if(r-i+1<=k)
(ans[id[i]]+=calc(i-1+n-r,k-r+i-1))%=P;
// printf("%d %d\n",l,r);
}
for(int i=1;i<=n;i++)
printf("%d\n",ans[i]);
}

[洛谷P5368] [PKUSC2018] 真实排名的更多相关文章

  1. Luogu P5368 [PKUSC2018]真实排名

    老年选手只会做SB题了(还调了好久) 很容易想到分类讨论,按第\(i\)个人有没有翻倍来算 若\(a_i\)未翻倍,显然此时将\([0,\lceil \frac{a_i}{2}\rceil)\)的数和 ...

  2. 「Luogu P5368 [PKUSC2018]真实排名」

    PKUSC签到题 题目大意 给出一个长度为 \(N\) 的序列,序列中有 \(K\) 个数会乘二,对于每个数计算在乘二后大于等于这个数的个数与乘二前没有发生变化的方案数. 分析 思路很清晰,可以将答案 ...

  3. 【LOJ4632】[PKUSC2018]真实排名

    [LOJ4632][PKUSC2018]真实排名 题面 终于有题面啦!!! 题目描述 小 C 是某知名比赛的组织者,该比赛一共有 \(n\) 名选手参加,每个选手的成绩是一个非负整数,定义一个选手的排 ...

  4. [PKUSC2018]真实排名

    [PKUSC2018]真实排名 题目大意: 有\(n(n\le10^5)\)个人,每个人有一个成绩\(A_i(0\le A_i\le10^9)\).定义一个人的排名为\(n\)个人中成绩不小于他的总人 ...

  5. BZOJ_5368_[Pkusc2018]真实排名_组合数

    BZOJ_5368_[Pkusc2018]真实排名_组合数 Description 小C是某知名比赛的组织者,该比赛一共有n名选手参加,每个选手的成绩是一个非负整数,定义一个选手的排名是:成绩不小于他 ...

  6. [PKUSC2018]真实排名——线段树+组合数

    题目链接: [PKUSC2018]真实排名 对于每个数$val$分两种情况讨论: 1.当$val$不翻倍时,那么可以翻倍的是权值比$\frac{val-1}{2}$小的和大于等于$val$的. 2.当 ...

  7. 【洛谷 P4291】 [HAOI2008]排名系统(Splay,Trie)

    题目链接 不是双倍经验我会去\(debug\)一上午? 一开始我是用的\(map+string\),跑的太慢了,T了4个点. 后来我手写了\(string\),重载了小于号,依然用的\(map\),T ...

  8. 【洛谷5368】[PKUSC2018] 真实排名(组合数学)

    点此看题面 大致题意: 有\(n\)个数字,定义一个数的排名为不小于它的数的个数.现要随机将其中\(k\)个数乘\(2\),求对于每个数有多少种方案使其排名不变. 分类讨论 对于这种题目,我们可以分类 ...

  9. BZOJ5368:[PKUSC2018]真实排名(组合数学)

    Description 小C是某知名比赛的组织者,该比赛一共有n名选手参加,每个选手的成绩是一个非负整数,定义一个选手的排名是:成绩不小于他的选手的数量(包括他自己). 例如如果333位选手的成绩分别 ...

  10. bzoj 5368: [Pkusc2018]真实排名

    Description 小C是某知名比赛的组织者,该比赛一共有n名选手参加,每个选手的成绩是一个非负整数,定义一个选手的排名是 :成绩不小于他的选手的数量(包括他自己).例如如果3位选手的成绩分别是[ ...

随机推荐

  1. Spring源码学习笔记13——总结篇, 从IOC到AOP

    系列文章目录和关于我 零丶序言 在<Spring源码学习笔记12--总结篇,IOC,Bean的生命周期,三大扩展点>中,我们总结了Spring IOC部分的知识,为了更好的给群里的伙伴们分 ...

  2. 系统内存管理:虚拟内存、内存分段与分页、页表缓存TLB以及Linux内存管理

    虚拟内存 虚拟内存是一种操作系统提供的机制,用于将每个进程分配的独立的虚拟地址空间映射到实际的物理内存地址空间上.通过使用虚拟内存,操作系统可以有效地解决多个应用程序直接操作物理内存可能引发的冲突问题 ...

  3. python实现图片提取文字功能

    安装需要的包 # pip install pytesseract # pip install Pillow # 安装OCR环境 # 下载exe安装文件 # https://digi.bib.uni-m ...

  4. 运用手机运营商二要素Api接口,守护您的账户和隐私,让您安心使用!

    随着移动互联网的普及,我们的生活离不开手机,手机成为了我们生活中不可或缺的一部分.但是随着移动支付的普及,手机支付在我们的生活中也变得越来越重要.手机支付是一种方便快捷的支付方式,但是也存在一些安全隐 ...

  5. Spring Event 观察者模式, 业务解耦神器

    观察者模式在实际开发过程中是非常常见的一种设计模式. Spring Event的原理就是观察者模式,只不过有Spring的加持,让我们更加方便的使用这一设计模式. 一.什么是观察者模式 概念: 观察者 ...

  6. .NET Core 实现Excel的导入导出

    目录 前言 NPOI简介 一.安装相对应的程序包 1.1.在 "管理NuGet程序包" 中的浏览搜索:"NPOI" 二.新建Excel帮助类 三.调用 3.1. ...

  7. Mybatis中的设计模式

    最近在看<通用源码阅读指导书:Mybatis源码详解>,这本书一一介绍了Mybatis中的各个包的功能,同时也涉及讲了一些阅读源码的技巧,还讲了一些源码中涉及的设计模式,这是本篇文章介绍的 ...

  8. Fireboom on Sealos:半小时搞定一个月的接口工作

    后端日常开发工作中有 88% 的接口都是 CURD,占用了超过 6 成开发时间.这些工作枯燥乏味,且价值低下,不仅荒废了时间,还无法获得任何成就感.而 Fireboom 可在 2 分钟内,完成传统模式 ...

  9. DevOps平台建设的关键点是什么?

    关键还是在人 找到一个「吃过猪肉,见过猪跑的」,你问他什么是猪,他自然比「没吃过猪肉,没见过猪跑的人」更了解猪.海豚海豚,你知道猪是什么样么?它都没上过陆地,这辈子都没见过猪,它哪知道猪是什么样. 有 ...

  10. Markdown 包含其他文件静态渲染工具

    1. 前言 在 GitHub 上写文档,很多时候要插入 uml,像 mermaid 这种可以直接在 GitHub/GitLab 中渲染的一般直接写个 code block 进去,但是这样造成一个问题就 ...