1.环境

系统:windows10

python版本:python3.6.1

使用的库:matplotlib,numpy

2.numpy库产生随机数几种方法

import numpy as np

numpy.random

rand(d0, d1, ..., dn)

In [2]: x=np.random.rand(2,5)

In [3]: x
Out[3]:
array([[ 0.84286554,  0.50007593,  0.66500549,  0.97387807,  0.03993009],
       [ 0.46391661,  0.50717355,  0.21527461,  0.92692517,  0.2567891 ]])

randn(d0, d1, ..., dn)查询结果为标准正态分布

In [4]: x=np.random.randn(2,5)

In [5]: x
Out[5]:
array([[-0.77195196,  0.26651203, -0.35045793, -0.0210377 ,  0.89749635],
       [-0.20229338,  1.44852833, -0.10858996, -1.65034606, -0.39793635]])

randint(low,high,size)

生成low到high之间(半开区间 [low, high)),size个数据

In [6]: x=np.random.randint(1,8,4)

In [7]: x
Out[7]: array([4, 4, 2, 7])

random_integers(low,high,size)

生成low到high之间(闭区间 [low, high)),size个数据

In [10]: x=np.random.random_integers(2,10,5)

In [11]: x
Out[11]: array([7, 4, 5, 4, 2])

3.散点图

x x轴
y y轴
s   圆点面积
c   颜色
marker  圆点形状
alpha   圆点透明度                #其他图也类似这种配置
N=50
# height=np.random.randint(150,180,20)
# weight=np.random.randint(80,150,20)
x=np.random.randn(N)
y=np.random.randn(N)
plt.scatter(x,y,s=50,c='r',marker='o',alpha=0.5)
plt.show()

4.折线图

x=np.linspace(-10000,10000,100) #将-10到10等区间分成100份
y=x**2+x**3+x**7
plt.plot(x,y)
plt.show()

折线图使用plot函数

5.条形图

N=5
y=[20,10,30,25,15]
y1=np.random.randint(10,50,5)
x=np.random.randint(10,1000,N)
index=np.arange(N)
plt.bar(left=index,height=y,color='red',width=0.3)
plt.bar(left=index+0.3,height=y1,color='black',width=0.3)
plt.show()

orientation设置横向条形图

N=5
y=[20,10,30,25,15]
y1=np.random.randint(10,50,5)
x=np.random.randint(10,1000,N)
index=np.arange(N)
# plt.bar(left=index,height=y,color='red',width=0.3)
# plt.bar(left=index+0.3,height=y1,color='black',width=0.3)
#plt.barh() 加了h就是横向的条形图,不用设置orientation
plt.bar(left=0,bottom=index,width=y,color='red',height=0.5,orientation='horizontal')
plt.show()

6.直方图

m1=100
sigma=20
x=m1+sigma*np.random.randn(2000)
plt.hist(x,bins=50,color="green",normed=True)
plt.show()

# #双变量的直方图
# #颜色越深频率越高
# #研究双变量的联合分布
#双变量的直方图
#颜色越深频率越高
#研究双变量的联合分布
x=np.random.rand(1000)+2
y=np.random.rand(1000)+3
plt.hist2d(x,y,bins=40)
plt.show()

7.饼状图

#设置x,y轴比例为1:1,从而达到一个正的圆
#labels标签参数,x是对应的数据列表,autopct显示每一个区域占的比例,explode突出显示某一块,shadow阴影
labes=['A','B','C','D']
fracs=[15,30,45,10]
explode=[0,0.1,0.05,0]
#设置x,y轴比例为1:1,从而达到一个正的圆
plt.axes(aspect=1)
#labels标签参数,x是对应的数据列表,autopct显示每一个区域占的比例,explode突出显示某一块,shadow阴影
plt.pie(x=fracs,labels=labes,autopct="%.0f%%",explode=explode,shadow=True)
plt.show()

8.箱型图

import matplotlib.pyplot as plt
import numpy as np
data=np.random.normal(loc=0,scale=1,size=1000)
#sym 点的形状,whis虚线的长度
plt.boxplot(data,sym="o",whis=1.5)
plt.show()
#sym 点的形状,whis虚线的长度

如何用python绘制各种图形的更多相关文章

  1. Python绘制3D图形

    来自:https://www.jb51.net/article/139349.htm 3D图形在数据分析.数据建模.图形和图像处理等领域中都有着广泛的应用,下面将给大家介绍一下如何使用python进行 ...

  2. 如何用 Python 绘制玫瑰图等常见疫情图

    新冠疫情已经持续好几个月了,目前,我国疫情已经基本控制住了,而欧美国家正处于爆发期,我们会看到很多网站都提供了多种疫情统计图,今天我们使用 Python 的 pyecharts 框架来绘制一些比较常见 ...

  3. python绘制图形(Turtle模块)

    用python的Turtle模块可以绘制很多精美的图形,下面简单介绍一下使用方法. 需要用到的工具有python,python 的安装这里就不再细说.自行搜索. from turtle import ...

  4. Python 使用 matplotlib绘制3D图形

    3D图形在数据分析.数据建模.图形和图像处理等领域中都有着广泛的应用,下面将给大家介绍一下如何在Python中使用 matplotlib进行3D图形的绘制,包括3D散点.3D表面.3D轮廓.3D直线( ...

  5. python绘制图形

      python能快速解决日常工作中的小任务,比如数据展示. python做数据展示,主要用到matplotlib库,使用简单的代码,就可以很方便的绘制折线图.柱状图等.使用Java等,可能还需要配合 ...

  6. Python plot_surface(Axes3D)方法:绘制3D图形

    3D 图形需要的数据与等高线图基本相同:X.Y 数据决定坐标点,Z 轴数据决定 X.Y 坐标点对应的高度.与等高线图使用等高线来代表高度不同,3D 图形将会以更直观的形式来表示高度. 为了绘制 3D ...

  7. 如何用 Python 和 API 收集与分析网络数据?

    摘自 https://www.jianshu.com/p/d52020f0c247 本文以一款阿里云市场历史天气查询产品为例,为你逐步介绍如何用 Python 调用 API 收集.分析与可视化数据.希 ...

  8. Python绘制PDF文件~超简单的小程序

    Python绘制PDF文件 项目简介 这次项目很简单,本次项目课,代码不超过40行,主要是使用 urllib和reportlab模块,来生成一个pdf文件. reportlab官方文档 http:// ...

  9. CSS绘制简单图形

    究竟该用字体图标.图片图标.还是CSS画一个图标?我也不知道.各有千秋吧.本文将介绍如何用css绘制简单的图形,所有测试在chrome58.0完成,如果你不能得到正确结果请到caniuse查一查看看是 ...

随机推荐

  1. npm详解

    一.npm介绍及安装 对于npm,大家多多少少都用过,作为一门技术,我想写篇博客记录一下,一起分享,一起学习. npm,是Node Package Manager的缩写,node的模块管理器,它是随同 ...

  2. 使用nodejs进行WEB开发

    这里,准备从零开始用nodejs实现一个微博系统.功能包括路由控制.页面模板.数据库访问.用户注册.登录.用户会话等内容. 将会介绍Express框架.MVC设计模式.ejs模板引擎以及MongoDB ...

  3. vue学习笔记-one

    学习vue基础以来,看各种教程,练习,随手写写,有错误请大家指导, 目前vue已经升级到2.0的版本,学习也最好是2.0的版本开始. 先看vue的几个特点:1,简单,2,轻量,3,模块友好 4, 组件 ...

  4. tablelayoutpanel内部组件变形

    tablelayoutpanel设为dock=full后,最大化或最小化窗口会变形. 解决办法:加入flowlayoutpanel,将tablelayoutpanel放入其中,然后在tablelayo ...

  5. 深入tornado中的ioLoop

    本文所剖析的tornado源码版本为4.4.2 ioloop就是对I/O多路复用的封装,它实现了一个单例,将这个单例保存在IOLoop._instance中 ioloop实现了Reactor模型,将所 ...

  6. JWebFileTrans(JDownload): 一款可以从网络上下载文件的小程序(二)

    一  前言 本文是上一篇博客JWebFileTrans:一款可以从网络上下载文件的小程序(一)的续集.此篇博客主要在上一篇的基础上加入了断点续传的功能,用户在下载中途停止下载后,下次可以读取断点文件, ...

  7. 详解Session分布式共享(.NET CORE版)

    一.前言&回顾 在上篇文章Session分布式共享 = Session + Redis + Nginx中,好多同学留言问了我好多问题,其中印象深刻的有:nginx挂了怎么办?采用Redis的S ...

  8. stl_各容器的总结

    一.stl容器总结: 1.以下的操作是在一千万的数据下操作.copy 都是在足够的空间下进行的copy, 测量方式: std::clock_t start = std::clock(); //待测代码 ...

  9. servlet的执行原理与生命周期

    先从servlet容器说起:大家最为熟悉的servlet容器就是Tomcat ,Servlet 容器是如何管理 Servlet?先看一下tomcat的容器模型:从上图可以看出 Tomcat 的容器分为 ...

  10. JAVA CyclicBarrier类详解

    一个同步辅助类,它允许一组线程互相等待,直到到达某个公共屏障点 (common barrier point).在涉及一组固定大小的线程的程序中,这些线程必须不时地互相等待,此时CyclicBarrie ...