题目链接:https://vjudge.net/problem/POJ-1087

A Plug for UNIX
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 17861   Accepted: 6172

Description

You are in charge of setting up the press room for the inaugural meeting of the United Nations Internet eXecutive (UNIX), which has an international mandate to make the free flow of information and ideas on the Internet as cumbersome and bureaucratic as possible. 
Since the room was designed to accommodate reporters and journalists from around the world, it is equipped with electrical receptacles to suit the different shapes of plugs and voltages used by appliances in all of the countries that existed when the room was built. Unfortunately, the room was built many years ago when reporters used very few electric and electronic devices and is equipped with only one receptacle of each type. These days, like everyone else, reporters require many such devices to do their jobs: laptops, cell phones, tape recorders, pagers, coffee pots, microwave ovens, blow dryers, curling 
irons, tooth brushes, etc. Naturally, many of these devices can operate on batteries, but since the meeting is likely to be long and tedious, you want to be able to plug in as many as you can. 
Before the meeting begins, you gather up all the devices that the reporters would like to use, and attempt to set them up. You notice that some of the devices use plugs for which there is no receptacle. You wonder if these devices are from countries that didn't exist when the room was built. For some receptacles, there are several devices that use the corresponding plug. For other receptacles, there are no devices that use the corresponding plug. 
In order to try to solve the problem you visit a nearby parts supply store. The store sells adapters that allow one type of plug to be used in a different type of outlet. Moreover, adapters are allowed to be plugged into other adapters. The store does not have adapters for all possible combinations of plugs and receptacles, but there is essentially an unlimited supply of the ones they do have.

Input

The input will consist of one case. The first line contains a single positive integer n (1 <= n <= 100) indicating the number of receptacles in the room. The next n lines list the receptacle types found in the room. Each receptacle type consists of a string of at most 24 alphanumeric characters. The next line contains a single positive integer m (1 <= m <= 100) indicating the number of devices you would like to plug in. Each of the next m lines lists the name of a device followed by the type of plug it uses (which is identical to the type of receptacle it requires). A device name is a string of at most 24 alphanumeric 
characters. No two devices will have exactly the same name. The plug type is separated from the device name by a space. The next line contains a single positive integer k (1 <= k <= 100) indicating the number of different varieties of adapters that are available. Each of the next k lines describes a variety of adapter, giving the type of receptacle provided by the adapter, followed by a space, followed by the type of plug.

Output

A line containing a single non-negative integer indicating the smallest number of devices that cannot be plugged in.

Sample Input

4
A
B
C
D
5
laptop B
phone C
pager B
clock B
comb X
3
B X
X A
X D

Sample Output

1

Source

题意:

有n个不同类型的插孔,m个需要充电的用电器,k种适配器,且每种适配器有无限个,适配器之间可以互相拼接(双向)。问:怎样安排,才能使得尽量多的用电器能充上电?

题解:

最大流问题。可知对于一个用电器,他要充电有两种方式,一种是直接将插头插到插孔上去,一种是通过适配器将插头与插孔相连。

1.建立超级源点,超级源点与每个用电器相连,且边的容量为1,表明这种用电器只有一台。

2.由于适配器之间可以互相拼接,所以对于每一对能够拼接的适配器,连上一条边,且这条边是双向的,容量为INF,因为题目说明了每种适配器都有无限个,所以这种搭配也有无限个。

3.用电器与插孔相连,以及用电器与适配器相连,且边的容量都为1,表示这种用电器只有一台。

4.适配器与插孔相连,且边的容量为INF,因为适配器有无限个。

5.建立超级汇点,且每个插孔与超级汇点相连,边的容量为1,表明只有一个插孔。

6.求最大流即可。

思考:

若每种适配器只有一个呢?

把每个适配器拆成两点,且内部连一条边,容量为1,使得流经这种适配器的流量限制在1之内,然后把INF都改成1。推广:如果限制了只有m个,那么边的容量就设置为m。

代码如下:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int mod = 1e9+;
const int MAXN = 3e2+; int maze[MAXN][MAXN];
int gap[MAXN], dis[MAXN], pre[MAXN], cur[MAXN];
int flow[MAXN][MAXN]; int sap(int start, int end, int nodenum)
{
memset(cur, , sizeof(cur));
memset(dis, , sizeof(dis));
memset(gap, , sizeof(gap));
memset(flow, , sizeof(flow));
int u = pre[start] = start, maxflow = , aug = INF;
gap[] = nodenum; while(dis[start]<nodenum)
{
loop:
for(int v = cur[u]; v<nodenum; v++)
if(maze[u][v]-flow[u][v]> && dis[u] == dis[v]+)
{
aug = min(aug, maze[u][v]-flow[u][v]);
pre[v] = u;
u = cur[u] = v;
if(v==end)
{
maxflow += aug;
for(u = pre[u]; v!=start; v = u, u = pre[u])
{
flow[u][v] += aug;
flow[v][u] -= aug;
}
aug = INF;
}
goto loop;
} int mindis = nodenum-;
for(int v = ; v<nodenum; v++)
if(maze[u][v]-flow[u][v]> && mindis>dis[v])
{
cur[u] = v;
mindis = dis[v];
}
if((--gap[dis[u]])==) break;
gap[dis[u]=mindis+]++;
u = pre[u];
}
return maxflow;
} /* 建图模式: —— —— —— —— —— ——
| |
超级源点-->device-->adapter-->plug-->超级汇点
| |
--
*/
char plug[MAXN][], dev[MAXN][][], ada[MAXN][][];
int main()
{
int n, m, k;
scanf("%d", &n);
for(int i = ; i<=n; i++) scanf("%s", plug[i]);
scanf("%d", &m);
for(int i = ; i<=m; i++) scanf("%s%s", dev[i][], dev[i][]);
scanf("%d",&k);
for(int i = ; i<=k; i++) scanf("%s%s", ada[i][], ada[i][]); memset(maze, , sizeof(maze));
for(int i = ; i<=m; i++) //dev-->plug
for(int j = ; j<=n; j++)
{
if(!strcmp(dev[i][],plug[j])) maze[n+i][j] = ;
}
for(int i = ; i<=k; i++) //ada-->ada
for(int j = ; j<=k; j++)
{
if(i==j) continue;
if(!strcmp(ada[i][],ada[j][])) maze[n+m+i][n+m+j] = INF;
if(!strcmp(ada[j][],ada[i][])) maze[n+m+j][n+m+i] = INF;
}
for(int i = ; i<=m; i++) //dev-->ada
for(int j = ; j<=k; j++)
{
if(!strcmp(dev[i][],ada[j][])) maze[n+i][n+m+j] = ;
if(!strcmp(dev[i][],ada[j][])) maze[n+i][n+m+j] = ;
}
for(int i = ; i<=k; i++) //ada--plug
for(int j = ; j<=n; j++)
{
if(!strcmp(ada[i][],plug[j])) maze[n+m+i][j] = INF;
if(!strcmp(ada[i][],plug[j])) maze[n+m+i][j] = INF;
} int start = , end = n+m+k+;
for(int i = ; i<=m; i++) maze[start][n+i] = ; //超级源点-->dev
for(int i = ; i<=n; i++) maze[i][end] = ; //plug-->超级汇点 cout<< m-sap(start, end, n+m+k+) <<endl;
}

POJ1087 A Plug for UNIX —— 最大流的更多相关文章

  1. POJ1087:A Plug for UNIX(最大流)

    A Plug for UNIX 题目链接:https://vjudge.net/problem/POJ-1087 Description: You are in charge of setting u ...

  2. 【poj1087/uva753】A Plug for UNIX(最大流)

    A Plug for UNIX   Description You are in charge of setting up the press room for the inaugural meeti ...

  3. POJ1087 A Plug for UNIX 【最大流】

    A Plug for UNIX Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13855   Accepted: 4635 ...

  4. POJ1087 A Plug for UNIX(网络流)

                                       A Plug for UNIX Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  5. POJ1087 A Plug for UNIX 2017-02-12 13:38 40人阅读 评论(0) 收藏

    A Plug for UNIX Description You are in charge of setting up the press room for the inaugural meeting ...

  6. poj1087 A Plug for UNIX(网络流最大流)

    http://poj.org/problem?id=1087 好久没遇见过这么坑的题了这个题真是挫的够可以的.题目大意:你作为某高管去住宿了,然后宾馆里有几种插座,分别有其对应型号,你携带了几种用电器 ...

  7. poj1087 A Plug for UNIX & poj1459 Power Network (最大流)

    读题比做题难系列…… poj1087 输入n,代表插座个数,接下来分别输入n个插座,字母表示.把插座看做最大流源点,连接到一个点做最大源点,流量为1. 输入m,代表电器个数,接下来分别输入m个电器,字 ...

  8. 【uva753/poj1087/hdu1526-A Plug for UNIX】最大流

    题意:给定n个插座,m个插头,k个转换器(x,y),转换器可以让插头x转成插头y.问最少有多少个插头被剩下. 题解: 最大流或者二分图匹配.然而我不知道怎么打二分图匹配..打了最大流.这题字符串比较坑 ...

  9. ZOJ1157, POJ1087,UVA 753 A Plug for UNIX (最大流)

    链接 : http://acm.hust.edu.cn/vjudge/problem/viewProblem.action? id=26746 题目意思有点儿难描写叙述 用一个别人描写叙述好的. 我的 ...

随机推荐

  1. angular中关于ng-repeat的性能问题

    首先,ng-repeat的渲染是改变则渲染的.而且是无法自动检测内容是否改变的. $scope作为一个对象,对象的特性就是两个对象是不相同的,因为我们比较的是两个对象的地址,即便两个对象的内容甚至排版 ...

  2. array的用法(关于动态选择值)

  3. Ajax 实现文件的下载

    JQuery的ajax函数的返回类型只有xml.text.json.html等类型,没有“流”类型,所以我们要实现ajax下载,不能够使用相应的ajax函数进行文件下载.但可以用js生成一个form, ...

  4. [Poi2010]Bridges 最大流+二分答案 判定混合图欧拉回路

    https://darkbzoj.cf/problem/2095 bzoj 相同的题挂了,这个oj可以写. 题目就是要我们找一条欧拉回路(每个桥经过一次就好,不管方向),使得这条回路上权值最大的尽量小 ...

  5. Idea基本讲解、常用配置以及快捷键设置

    IDEA官网学习文档:https://www.jetbrains.com/idea/documentation/ IDEA官网入门教程:https://www.jetbrains.com/help/i ...

  6. [Bzoj3676][Apio2014]回文串(后缀自动机)(parent树)(倍增)

    3676: [Apio2014]回文串 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 3396  Solved: 1568[Submit][Statu ...

  7. iOS数据持久化存储

    本文中的代码托管在github上:https://github.com/WindyShade/DataSaveMethods 相对复杂的App仅靠内存的数据肯定无法满足,数据写磁盘作持久化存储是几乎每 ...

  8. 【c专家编程】分析c语言的声明

    联合: 在结构中,每个成员依次存储,而在联合中,所有成员都从偏移地址零开始存储,联合一般被用来节省空间,用法和struct相同. union bits32_tag { int whole; // 一个 ...

  9. Android Studio 2.0 Beta 5公布,修复几个与即时执行相关的严重BUG.

    Android Studio 2.0 Beta 5公布,修复几个与即时执行相关的严重BUG. This build fixes a couple of important bugs related t ...

  10. LRUCache 具体解释

    LRU的基本概念: LRU是Least Recently Used的缩写,最近最少使用算法. Java 实现LRUCache 1.基于LRU的基本概念,为了达到按最近最少使用排序.能够选择HashMa ...