package Spark_MLlib

import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.classification.{BinaryLogisticRegressionSummary, LogisticRegression, LogisticRegressionModel}
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.ml.feature.{IndexToString, StringIndexer, VectorIndexer}
import org.apache.spark.sql.SparkSession
import org.apache.spark.ml.linalg.{Vector, Vectors}
import org.apache.spark.sql.functions case class data_schema(features:Vector,label:String)
object 二项逻辑回归__二分类 {
val spark=SparkSession.builder().master("local").getOrCreate()
import spark.implicits._ //支持把一个RDD隐式转换为一个DataFrame
def main(args: Array[String]): Unit = {
val df =spark.sparkContext.textFile("file:///home/soyo/桌面/spark编程测试数据/soyo.txt")
.map(_.split(",")).map(x=>data_schema(Vectors.dense(x().toDouble,x().toDouble,x().toDouble,x().toDouble),x())).toDF()
df.show()
df.createOrReplaceTempView("data_schema")
val df_data=spark.sql("select * from data_schema where label !='soyo2'") //这里soyo2需要加单引号,不然报错
// df_data.map(x=>x(1)+":"+x(0)).collect().foreach(println)
df_data.show()
val labelIndexer=new StringIndexer().setInputCol("label").setOutputCol("indexedLabel").fit(df_data)
val featureIndexer=new VectorIndexer().setInputCol("features").setOutputCol("indexedFeatures").fit(df_data) //目的在特征向量中建类别索引
val Array(trainData,testData)=df_data.randomSplit(Array(0.7,0.3))
val lr=new LogisticRegression().setLabelCol("indexedLabel").setFeaturesCol("indexedFeatures").setMaxIter().setRegParam(0.5).setElasticNetParam(0.8)//setRegParam:正则化参数,设置elasticnet混合参数为0.8,setFamily("multinomial"):设置为多项逻辑回归,不设置setFamily为二项逻辑回归
val labelConverter=new IndexToString().setInputCol("prediction").setOutputCol("predictionLabel").setLabels(labelIndexer.labels) val lrPipeline=new Pipeline().setStages(Array(labelIndexer,featureIndexer,lr,labelConverter))
val lrPipeline_Model=lrPipeline.fit(trainData)
val lrPrediction=lrPipeline_Model.transform(testData)
lrPrediction.show(false)
// lrPrediction.take(100).foreach(println)
//模型评估
val evaluator=new MulticlassClassificationEvaluator().setLabelCol("indexedLabel").setPredictionCol("prediction")
val lrAccuracy=evaluator.evaluate(lrPrediction)
println("准确率为: "+lrAccuracy)
val lrError=-lrAccuracy
println("错误率为: "+lrError)
val LRmodel=lrPipeline_Model.stages().asInstanceOf[LogisticRegressionModel]
println("二项逻辑回归模型系数的向量: "+LRmodel.coefficients)
println("二项逻辑回归模型的截距: "+LRmodel.intercept)
println("类的数量(标签可以使用的值): "+LRmodel.numClasses)
println("模型所接受的特征的数量: "+LRmodel.numFeatures)
//对模型的总结(summary)目前只支持二项逻辑斯蒂回归,多项式逻辑回归并不支持(用的是spark 2.2.0)
println(LRmodel.hasSummary)
val trainingSummary = LRmodel.summary
//损失函数,可以看到损失函数随着循环是逐渐变小的,损失函数越小,模型就越好
val objectiveHistory =trainingSummary.objectiveHistory
objectiveHistory.foreach(println)
//强制转换为BinaryLogisticRegressionSummary
val binarySummary= trainingSummary.asInstanceOf[BinaryLogisticRegressionSummary]
//ROC曲线下方的面积,越接近1说明模型越好
val area_ROC=binarySummary.areaUnderROC
println("ROC 曲线下的面积为: "+area_ROC)
//fMeasureByThreshold:返回一个带有beta = 1.0的两个字段(阈值,f - measure)曲线的dataframe
val fMeasure=binarySummary.fMeasureByThreshold
println("fMeasure的行数: "+fMeasure.collect().length)
fMeasure.show()
val maxFMeasure=fMeasure.select(functions.max("F-Measure")).head().getDouble()
println("最大的F-Measure的值为: "+maxFMeasure)
//最优的阈值
val bestThreashold=fMeasure.where($"F-Measure"===maxFMeasure).select("threshold").head().getDouble()
println("最优的阈值为:"+bestThreashold)
/* 这样求的不是最优的阈值
val s=fMeasure.select(functions.max("threshold")).head().getDouble(0)
println(s)
*/
LRmodel.setThreshold(bestThreashold) }
}

结果:

+-----------------+-----+------------+------------------+--------------------------------------------+----------------------------------------+----------+---------------+
|features         |label|indexedLabel|indexedFeatures   |rawPrediction                               |probability                             |prediction|predictionLabel|
+-----------------+-----+------------+------------------+--------------------------------------------+----------------------------------------+----------+---------------+
|[4.4,2.9,1.4,0.2]|soyo1|0.0         |[4.4,2.9,1.4,1.0] |[0.0690256519103008,-0.0690256519103008]    |[0.5172495646670774,0.48275043533292256]|0.0       |soyo1          |
|[4.4,3.0,1.3,0.2]|soyo1|0.0         |[4.4,3.0,1.3,1.0] |[0.07401171769156373,-0.07401171769156373]  |[0.518494487869238,0.481505512130762]   |0.0       |soyo1          |
|[4.6,3.1,1.5,0.2]|soyo1|0.0         |[4.6,3.1,1.5,1.0] |[0.06403958612903785,-0.06403958612903785]  |[0.5160044273015656,0.48399557269843435]|0.0       |soyo1          |
|[4.6,3.2,1.4,0.2]|soyo1|0.0         |[4.6,3.2,1.4,1.0] |[0.0690256519103008,-0.0690256519103008]    |[0.5172495646670774,0.48275043533292256]|0.0       |soyo1          |
|[4.6,3.6,1.0,0.2]|soyo1|0.0         |[4.6,3.6,1.0,1.0] |[0.08896991503535255,-0.08896991503535255]  |[0.5222278183980882,0.4777721816019118] |0.0       |soyo1          |
|[4.8,3.0,1.4,0.1]|soyo1|0.0         |[4.8,3.0,1.4,0.0] |[0.0690256519103008,-0.0690256519103008]    |[0.5172495646670774,0.48275043533292256]|0.0       |soyo1          |
|[4.9,2.5,4.5,1.7]|soyo3|1.0         |[4.9,2.5,4.5,9.0] |[-0.08554238730885033,0.08554238730885033]  |[0.47862743439605193,0.5213725656039481]|1.0       |soyo3          |
|[5.0,3.0,1.6,0.2]|soyo1|0.0         |[5.0,3.0,1.6,1.0] |[0.059053520347774904,-0.059053520347774904]|[0.5147590911988562,0.48524090880114373]|0.0       |soyo1          |
|[5.1,3.5,1.4,0.3]|soyo1|0.0         |[5.1,3.5,1.4,2.0] |[0.0690256519103008,-0.0690256519103008]    |[0.5172495646670774,0.48275043533292256]|0.0       |soyo1          |
|[5.1,3.8,1.6,0.2]|soyo1|0.0         |[5.1,3.8,1.6,1.0] |[0.059053520347774904,-0.059053520347774904]|[0.5147590911988562,0.48524090880114373]|0.0       |soyo1          |
|[5.3,3.7,1.5,0.2]|soyo1|0.0         |[5.3,3.7,1.5,1.0] |[0.06403958612903785,-0.06403958612903785]  |[0.5160044273015656,0.48399557269843435]|0.0       |soyo1          |
|[5.4,3.7,1.5,0.2]|soyo1|0.0         |[5.4,3.7,1.5,1.0] |[0.06403958612903785,-0.06403958612903785]  |[0.5160044273015656,0.48399557269843435]|0.0       |soyo1          |
|[5.4,3.9,1.7,0.4]|soyo1|0.0         |[5.4,3.9,1.7,3.0] |[0.05406745456651198,-0.05406745456651198]  |[0.5135135717949689,0.486486428205031]  |0.0       |soyo1          |
|[5.7,3.8,1.7,0.3]|soyo1|0.0         |[5.7,3.8,1.7,2.0] |[0.05406745456651198,-0.05406745456651198]  |[0.5135135717949689,0.486486428205031]  |0.0       |soyo1          |
|[5.8,2.8,5.1,2.4]|soyo3|1.0         |[5.8,2.8,5.1,16.0]|[-0.11545878199642795,0.11545878199642795]  |[0.4711673274353307,0.5288326725646694] |1.0       |soyo3          |
|[5.8,4.0,1.2,0.2]|soyo1|0.0         |[5.8,4.0,1.2,1.0] |[0.07899778347282668,-0.07899778347282668]  |[0.5197391814925231,0.480260818507477]  |0.0       |soyo1          |
|[6.1,3.0,4.9,1.8]|soyo3|1.0         |[6.1,3.0,4.9,10.0]|[-0.10548665043390212,0.10548665043390212]  |[0.4736527642876721,0.5263472357123279] |1.0       |soyo3          |
|[6.3,2.7,4.9,1.8]|soyo3|1.0         |[6.3,2.7,4.9,10.0]|[-0.10548665043390212,0.10548665043390212]  |[0.4736527642876721,0.5263472357123279] |1.0       |soyo3          |
|[6.3,2.9,5.6,1.8]|soyo3|1.0         |[6.3,2.9,5.6,10.0]|[-0.14038911090274264,0.14038911090274264]  |[0.46496025354157383,0.5350397464584261]|1.0       |soyo3          |
|[6.5,3.0,5.5,1.8]|soyo3|1.0         |[6.5,3.0,5.5,10.0]|[-0.13540304512147971,0.13540304512147971]  |[0.4662008623530858,0.5337991376469143] |1.0       |soyo3          |
+-----------------+-----+------------+------------------+--------------------------------------------+----------------------------------------+----------+---------------+
only showing top 20 rows

准确率为: 1.0
错误率为: 0.0
二项逻辑回归模型系数的向量: [0.0,0.0,0.0498606578126294,-0.0]
二项逻辑回归模型的截距: -0.13883057284798195
类的数量(标签可以使用的值): 2
模型所接受的特征的数量: 4
true
0.6927819059876479
0.6921535505946383
0.6902127176671448
0.6898394130469451
0.689535794969328
0.6894009255584304
0.6893497986701255
0.689265433291139
0.6887228224555286
0.6895877386375889
0.6872109190567809
ROC 曲线下的面积为: 1.0
fMeasure的行数: 26
+-------------------+-------------------+
|          threshold|          F-Measure|
+-------------------+-------------------+
| 0.5511227178429281|0.05128205128205127|
| 0.5486545095952616|                0.1|
|  0.547419499422364|0.14634146341463414|
| 0.5449477416103359| 0.1904761904761905|
| 0.5412359859690851| 0.2727272727272727|
| 0.5399976958289747|0.34782608695652173|
| 0.5387589116841329|0.38297872340425526|
| 0.5375196486465557| 0.4799999999999999|
| 0.5362799218518347| 0.5098039215686275|
| 0.5350397464584261| 0.6428571428571429|
| 0.5337991376469143| 0.6896551724137931|
| 0.5325581106192748| 0.7333333333333334|
| 0.5313166805981351| 0.7741935483870968|
| 0.5300748628260323| 0.8125000000000001|
| 0.5288326725646694| 0.9142857142857143|
| 0.5275901250941695|  0.958904109589041|
| 0.5263472357123279|  0.972972972972973|
| 0.5251040197338624|                1.0|
| 0.4889779551275146| 0.9743589743589743|
|  0.486486428205031| 0.9500000000000001|
|0.48524090880114373| 0.8941176470588235|
|0.48399557269843435| 0.7916666666666666|
|0.48275043533292256| 0.7307692307692308|
|  0.481505512130762| 0.6909090909090909|
|  0.480260818507477| 0.6846846846846847|
|0.47901636986720014| 0.6785714285714285|
+-------------------+-------------------+

最大的F-Measure的值为: 1.0
最优的阀值为:0.5251040197338624

Spark 二项逻辑回归__二分类的更多相关文章

  1. Spark 多项式逻辑回归__二分类

    package Spark_MLlib import org.apache.spark.ml.Pipeline import org.apache.spark.ml.classification.{L ...

  2. Spark 多项式逻辑回归__多分类

    package Spark_MLlib import org.apache.spark.ml.Pipeline import org.apache.spark.ml.classification.{B ...

  3. 机器学习 —— 基础整理(五)线性回归;二项Logistic回归;Softmax回归及其梯度推导;广义线性模型

    本文简单整理了以下内容: (一)线性回归 (二)二分类:二项Logistic回归 (三)多分类:Softmax回归 (四)广义线性模型 闲话:二项Logistic回归是我去年入门机器学习时学的第一个模 ...

  4. 机器学习---逻辑回归(二)(Machine Learning Logistic Regression II)

    在<机器学习---逻辑回归(一)(Machine Learning Logistic Regression I)>一文中,我们讨论了如何用逻辑回归解决二分类问题以及逻辑回归算法的本质.现在 ...

  5. Logistic Regression(逻辑回归)(二)—深入理解

    (整理自AndrewNG的课件,转载请注明.整理者:华科小涛@http://www.cnblogs.com/hust-ghtao/) 上一篇讲解了Logistic Regression的基础知识,感觉 ...

  6. stanford coursera 机器学习编程作业 exercise 3(逻辑回归实现多分类问题)

    本作业使用逻辑回归(logistic regression)和神经网络(neural networks)识别手写的阿拉伯数字(0-9) 关于逻辑回归的一个编程练习,可参考:http://www.cnb ...

  7. scikit-learn机器学习(二)逻辑回归进行二分类(垃圾邮件分类),二分类性能指标,画ROC曲线,计算acc,recall,presicion,f1

    数据来自UCI机器学习仓库中的垃圾信息数据集 数据可从http://archive.ics.uci.edu/ml/datasets/sms+spam+collection下载 转成csv载入数据 im ...

  8. 机器学习作业(二)逻辑回归——Python(numpy)实现

    题目太长啦!文档下载[传送门] 第1题 简述:实现逻辑回归. 此处使用了minimize函数代替Matlab的fminunc函数,参考了该博客[传送门]. import numpy as np imp ...

  9. 机器学习作业(二)逻辑回归——Matlab实现

    题目太长啦!文档下载[传送门] 第1题 简述:实现逻辑回归. 第1步:加载数据文件: data = load('ex2data1.txt'); X = data(:, [1, 2]); y = dat ...

随机推荐

  1. 84-Market Facilitation Index 市场促进指数指标.(2015.7.3)

    Market Facilitation Index 市场促进指数指标 MFI指标的计算方式为: MFI=High(最高价)-Low(最低价))/ Volume(成交量) MFI上升,成交量上升,表示价 ...

  2. 接口测试工具-fiddler的运用

    本篇主要介绍一下fiddler的基本运用,包括查看接口请求方式,状态响应码,如何进行接口测试等 一.Fiddler的优点 独立的可以直接抓http请求 小巧.功能完善 快捷.启动就行 代理方便 二.什 ...

  3. noip模拟赛 终末

    分析:举个例子就能发现:偶数位上的数都必须是0,奇数位上的数可以取0~k-1,这就是一个标准的数位dp了. 这编译器......数组越界了竟然不报错. #include <cstdio> ...

  4. BBS+Blog项目流程及补充知识点

    项目流程: 1. 产品需求 (1)基于用户认证组件和Ajax实现登陆验证(图片验证码) (2)基于forms组件和Ajax实现注册功能 (3)设计系统首页(文章列表渲染) (4)设计个人站点页面 (5 ...

  5. 搬砖--杭电校赛(dfs)

    搬砖 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Submissi ...

  6. SHARP 加粉

    http://v.ku6.com/show/7ufwm7pqfF8D_f13IdCaag...html

  7. Java:删除某文件夹下的所有文件

    import java.io.File;public class Test{ public static void main(String args[]){ Test t = new Test(); ...

  8. firemonkey获取当前文件所在路径的方法

    在之前,我们知道有三种方法: ExtractFilePath(ParamStr(0)) ExtractFilePath(Application.ExeName) GetCurrentDir + '\' ...

  9. 【转】winform 程序实现一次只能打开一个该程序

    ref: http://www.jb51.net/article/17747.htm //在程序的main函数中加入以下代码 bool createdNew; System.Threading.Mut ...

  10. C++ - 库函数优先级队列(priority_queue)输出最小值 代码

    库函数优先级队列(priority_queue)输出最小值 代码 本文地址: http://blog.csdn.net/caroline_wendy 库函数优先级队列(priority_queue)的 ...